Vincent Prevot

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1045847/publications.pdf

Version: 2024-02-01

186 papers 10,843 citations

25034 57 h-index 95 g-index

217 all docs

217 docs citations

217 times ranked

9692 citing authors

#	Article	IF	CITATIONS
1	European Consensus Statement on congenital hypogonadotropic hypogonadismâ€"pathogenesis, diagnosis and treatment. Nature Reviews Endocrinology, 2015, 11, 547-564.	9.6	664
2	Hypothalamic Tanycytes Are an ERK-Gated Conduit for Leptin into the Brain. Cell Metabolism, 2014, 19, 293-301.	16.2	381
3	Elevated prenatal anti-Mý llerian hormone reprograms the fetus and induces polycystic ovary syndrome in adulthood. Nature Medicine, 2018, 24, 834-846.	30.7	289
4	Tanycytic VEGF-A Boosts Blood-Hypothalamus Barrier Plasticity and Access of Metabolic Signals to the Arcuate Nucleus in Response to Fasting. Cell Metabolism, 2013, 17, 607-617.	16.2	285
5	Novel role for anti-MÃ $\frac{1}{4}$ llerian hormone in the regulation of GnRH neuron excitability and hormone secretion. Nature Communications, 2016, 7, 10055.	12.8	284
6	Rapid sensing of circulating ghrelin by hypothalamic appetite-modifying neurons. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 1512-1517.	7.1	258
7	Differential distribution of tight junction proteins suggests a role for tanycytes in bloodâ€hypothalamus barrier regulation in the adult mouse brain. Journal of Comparative Neurology, 2010, 518, 943-962.	1.6	254
8	Semaglutide lowers body weight in rodents via distributed neural pathways. JCI Insight, 2020, 5, .	5.0	250
9	Tanycyteâ€ike cells form a blood–cerebrospinal fluid barrier in the circumventricular organs of the mouse brain. Journal of Comparative Neurology, 2013, 521, 3389-3405.	1.6	219
10	Role of astrocytes, microglia, and tanycytes in brain control of systemic metabolism. Nature Neuroscience, 2019, 22, 7-14.	14.8	200
11	SEMA3A, a Gene Involved in Axonal Pathfinding, Is Mutated in Patients with Kallmann Syndrome. PLoS Genetics, 2012, 8, e1002896.	3.5	190
12	The Versatile Tanycyte: A Hypothalamic Integrator of Reproduction and Energy Metabolism. Endocrine Reviews, 2018, 39, 333-368.	20.1	177
13	A microRNA switch regulates the rise in hypothalamic GnRH production before puberty. Nature Neuroscience, 2016, 19, 835-844.	14.8	174
14	Cell-Surface Estrogen Receptors Mediate Calcium-Dependent Nitric Oxide Release in Human Endothelia. Circulation, 2000, 101, 1594-1597.	1.6	165
15	Definitive evidence for the existence of morphological plasticity in the external zone of the median eminence during the rat estrous cycle: implication of neuro-glio-endothelial interactions in gonadotropin-releasing hormone release. Neuroscience, 1999, 94, 809-819.	2.3	164
16	The SARS-CoV-2 main protease Mpro causes microvascular brain pathology by cleaving NEMO in brain endothelial cells. Nature Neuroscience, 2021, 24, 1522-1533.	14.8	164
17	MRI atlas of the human hypothalamus. NeuroImage, 2012, 59, 168-180.	4.2	160
18	Normal Female Sexual Development Requires Neuregulin–erbB Receptor Signaling in Hypothalamic Astrocytes. Journal of Neuroscience, 2003, 23, 230-239.	3.6	159

#	Article	IF	CITATIONS
19	Development of the neurons controlling fertility in humans: new insights from 3D imaging and transparent fetal brains. Development (Cambridge), 2016, 143, 3969-3981.	2.5	140
20	Glial–Neuronal–Endothelial Interactions are Involved in the Control of GnRH Secretion. Journal of Neuroendocrinology, 2002, 14, 247-255.	2.6	132
21	Brain-Endocrine Interactions: A Microvascular Route in the Mediobasal Hypothalamus. Endocrinology, 2009, 150, 5509-5519.	2.8	123
22	Distribution of leptinâ€sensitive cells in the postnatal and adult mouse brain. Journal of Comparative Neurology, 2010, 518, 459-476.	1.6	122
23	Neonatal overnutrition causes early alterations in the central response to peripheral ghrelin. Molecular Metabolism, 2015, 4, 15-24.	6.5	122
24	Glia-to-neuron signaling and the neuroendocrine control of female puberty. Annals of Medicine, 2003, 35, 244-255.	3.8	117
25	Female sexual behavior in mice is controlled by kisspeptin neurons. Nature Communications, 2018, 9, 400.	12.8	116
26	Glucagon-like peptide 1 receptor induced suppression of food intake, and body weight is mediated by central IL-1 and IL-6. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 16199-16204.	7.1	114
27	Polycystic ovary syndrome is transmitted via a transgenerational epigenetic process. Cell Metabolism, 2021, 33, 513-530.e8.	16.2	107
28	Estradiol Coupling to Endothelial Nitric Oxide Stimulates Gonadotropin-Releasing Hormone Release from Rat Median Eminence Via a Membrane Receptor*. Endocrinology, 1999, 140, 652-659.	2.8	106
29	Activation of erbB-1 Signaling in Tanycytes of the Median Eminence Stimulates Transforming Growth Factor \hat{I}^2 1Release via Prostaglandin E2Production and Induces Cell Plasticity. Journal of Neuroscience, 2003, 23, 10622-10632.	3.6	105
30	Semaphorin7A regulates neuroglial plasticity in the adult hypothalamic median eminence. Nature Communications, 2015, 6, 6385.	12.8	105
31	Leptin-dependent neuronal NO signaling in the preoptic hypothalamus facilitates reproduction. Journal of Clinical Investigation, 2014, 124, 2550-2559.	8.2	104
32	Kisspeptin-GPR54 Signaling in Mouse NO-Synthesizing Neurons Participates in the Hypothalamic Control of Ovulation. Journal of Neuroscience, 2012, 32, 932-945.	3.6	103
33	Alteration in Neonatal Nutrition Causes Perturbations in Hypothalamic Neural Circuits Controlling Reproductive Function. Journal of Neuroscience, 2012, 32, 11486-11494.	3.6	92
34	Prostaglandin E ₂ release from astrocytes triggers gonadotropin-releasing hormone (GnRH) neuron firing via EP2 receptor activation. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 16104-16109.	7.1	91
35	The special relationship: glia–neuron interactions in the neuroendocrine hypothalamus. Nature Reviews Endocrinology, 2018, 14, 25-44.	9.6	91
36	Convergence of Melatonin and Serotonin (5-HT) Signaling at MT2/5-HT2C Receptor Heteromers. Journal of Biological Chemistry, 2015, 290, 11537-11546.	3.4	90

#	Article	IF	CITATIONS
37	The gentle art of saying NO: how nitric oxide gets things done in the hypothalamus. Nature Reviews Endocrinology, 2017, 13, 521-535.	9.6	87
38	Transforming growth factor \hat{l}_{\pm} promotes sequential conversion of mature astrocytes into neural progenitors and stem cells. Oncogene, 2007, 26, 2695-2706.	5.9	83
39	GnRH nerve terminals, tanycytes and neurohaemal junction remodeling in the adult median eminence: functional consequences for reproduction and dynamic role of vascular endothelial cells. Journal of Neuroendocrinology, 2010, 22, no-no.	2.6	82
40	Neuron-to-Glia Signaling Mediated by Excitatory Amino Acid Receptors Regulates ErbB Receptor Function in Astroglial Cells of the Neuroendocrine Brain. Journal of Neuroscience, 2003, 23, 915-926.	3.6	79
41	DCXâ€expressing cells in the vicinity of the hypothalamic neurogenic niche: A comparative study between mouse, sheep, and human tissues. Journal of Comparative Neurology, 2014, 522, 1966-1985.	1.6	79
42	Hypothalamic bile acid-TGR5 signaling protects from obesity. Cell Metabolism, 2021, 33, 1483-1492.e10.	16.2	79
43	Morphine and anandamide coupling to nitric oxide stimulates GnRH and CRF release from rat median eminence: neurovascular regulation. Brain Research, 1998, 790, 236-244.	2.2	78
44	<i> <scp>KLB</scp> </i> , encoding βâ€Klotho, is mutated in patients with congenital hypogonadotropic hypogonadism. EMBO Molecular Medicine, 2017, 9, 1379-1397.	6.9	77
45	erbB-1 and erbB-4 Receptors Act in Concert to Facilitate Female Sexual Development and Mature Reproductive Function. Endocrinology, 2005, 146, 1465-1472.	2.8	70
46	Melanin-concentrating hormone regulates beat frequency of ependymal cilia and ventricular volume. Nature Neuroscience, 2013, 16, 845-847.	14.8	70
47	Vascular Endothelial Cells Promote Acute Plasticity in Ependymoglial Cells of the Neuroendocrine Brain. Journal of Neuroscience, 2004, 24, 10353-10363.	3.6	67
48	A comparative study of the neural stem cell niche in the adult hypothalamus of human, mouse, rat and gray mouse lemur (<i>Microcebus murinus</i>). Journal of Comparative Neurology, 2018, 526, 1419-1443.	1.6	67
49	Leptin brain entry via a tanycytic LepR–EGFR shuttle controls lipid metabolism and pancreas function. Nature Metabolism, 2021, 3, 1071-1090.	11.9	67
50	Estradiol-stimulated nitric oxide release in human granulocytes is dependent on intracellular calcium transients: evidence of a cell surface estrogen receptor. Blood, 2000, 95, 3951-3958.	1.4	66
51	Morphological Evidence for Direct Interaction Between Gonadotrophinâ€Releasing Hormone Neurones and Astroglial Cells in the Human Hypothalamus. Journal of Neuroendocrinology, 2007, 19, 691-702.	2.6	66
52	Hippocampal nitric oxide upregulation precedes memory loss and ${\rm A\hat{l}^21}$ -40accumulation after chronic brain hypoperfusion in rats. Neurological Research, 2003, 25, 635-641.	1.3	65
53	Nitric Oxide as Key Mediator of Neuron-to-Neuron and Endothelia-to-Glia Communication Involved in the Neuroendocrine Control of Reproduction. Neuroendocrinology, 2011, 93, 74-89.	2,5	64
54	Activation of Neuronal Nitric Oxide Release Inhibits Spontaneous Firing in Adult Gonadotropin-Releasing Hormone Neurons: A Possible Local Synchronizing Signal. Endocrinology, 2008, 149, 587-596.	2.8	62

#	Article	IF	Citations
55	Function-related structural plasticity of the GnRH system. Frontiers in Neuroendocrinology, 2010, 31, 241-258.	5.2	62
56	Role of Estradiol in the Dynamic Control of Tanycyte Plasticity Mediated by Vascular Endothelial Cells in the Median Eminence. Endocrinology, 2010, 151, 1760-1772.	2.8	62
57	Semi-quantitative ultrastructural analysis of the localization and neuropeptide content of gonadotropin releasing hormone nerve terminals in the median eminence throughout the estrous cycle of the rat. Neuroscience, 1998, 84, 177-191.	2.3	61
58	Endothelial Expression of Endocan Is Strongly Associated with Tumor Progression in Pituitary Adenoma. Brain Pathology, 2012, 22, 757-764.	4.1	61
59	Brain Endothelial Cells Control Fertility through Ovarian-Steroid–Dependent Release of Semaphorin 3A. PLoS Biology, 2014, 12, e1001808.	5.6	56
60	Presence of \hat{l} ¹ /4 and \hat{l} ² opioid receptor mRNAs in galanin but not in GnRH neurons in the female rat. NeuroReport, 1997, 8, 3167-3172.	1.2	55
61	Expression of the orphan GPR50 protein in rodent and human dorsomedial hypothalamus, tanycytes and median eminence. Journal of Pineal Research, 2010, 48, 263-269.	7.4	54
62	Neuronal–glial–endothelial interactions and cell plasticity in the postnatal hypothalamus: Implications for the neuroendocrine control of reproduction. Psychoneuroendocrinology, 2007, 32, S46-S51.	2.7	53
63	Evidence That Members of the TGFβ Superfamily Play a Role in Regulation of the GnRH Neuroendocrine Axis: Expression of a Type I Serineâ€Threonine Kinase Receptor for TGRβ and Activin in GnRH Neurones and Hypothalamic Areas of the Female Rat. Journal of Neuroendocrinology, 2000, 12, 665-670.	2.6	52
64	Role of Glia in the Regulation of Gonadotropin-Releasing Hormone Neuronal Activity and Secretion. Neuroendocrinology, 2013, 98, 1-15.	2.5	52
65	Coupling of Neuronal Nitric Oxide Synthase to NMDA Receptors via Postsynaptic Density-95 Depends on Estrogen and Contributes to the Central Control of Adult Female Reproduction. Journal of Neuroscience, 2007, 27, 6103-6114.	3.6	51
66	Obese patients with NASH have increased hepatic expression of SARS-CoV-2 critical entry points. Journal of Hepatology, 2021, 74, 469-471.	3.7	51
67	Differential erbB signaling in astrocytes from the cerebral cortex and the hypothalamus of the human brain. Glia, 2009, 57, 362-379.	4.9	50
68	Defective AMH signaling disrupts GnRH neuron development and function and contributes to hypogonadotropic hypogonadism. ELife, 2019, 8 , .	6.0	49
69	Evidence for Expression of Galanin Receptor Galâ€R1â€∫mRNA in Certain Gonadotropin Releasing Hormone Neurones of the Rostral Preoptic Area. Journal of Neuroendocrinology, 1999, 11, 805-812.	2.6	48
70	Nitric oxide signalling in the brain and its control of bodily functions. British Journal of Pharmacology, 2020, 177, 5437-5458.	5.4	48
71	Median eminence nitric oxide signaling. Brain Research Reviews, 2000, 34, 27-41.	9.0	47
72	Evidence for a Spontaneous Nitric Oxide Release from the Rat Median Eminence: Influence on Gonadotropin-Releasing Hormone Release*. Endocrinology, 2001, 142, 2343-2350.	2.8	47

#	Article	IF	Citations
73	Hippocampal lipoprotein lipase regulates energy balance in rodents. Molecular Metabolism, 2014, 3, 167-176.	6.5	47
74	Alteration of the gut microbiota following SARS-CoV-2 infection correlates with disease severity in hamsters. Gut Microbes, 2022, 14, 2018900.	9.8	47
75	Sex steroid hormones-related structural plasticity in the human hypothalamus. NeuroImage, 2010, 50, 428-433.	4.2	46
76	Transforming Growth Factor \hat{I}^21 May Directly Influence Gonadotropin-Releasing Hormone Gene Expression in the Rat Hypothalamus. Endocrinology, 2004, 145, 1794-1801.	2.8	45
77	MCH Neurons Regulate Permeability of the Median Eminence Barrier. Neuron, 2020, 107, 306-319.e9.	8.1	45
78	Phenotyping of nNOS neurons in the postnatal and adult female mouse hypothalamus. Journal of Comparative Neurology, 2017, 525, 3177-3189.	1.6	44
79	Hypothalamic dopamine signalling regulates brown fat thermogenesis. Nature Metabolism, 2019, 1, 811-829.	11.9	44
80	Puberty in Mice and Rats. , 2015, , 1395-1439.		43
81	Endozepines and their receptors: Structure, functions and pathophysiological significance. , 2020, 208, 107386.		43
82	Hypothalamic miR-30 regulates puberty onset via repression of the puberty-suppressing factor, Mkrn3. PLoS Biology, 2019, 17, e3000532.	5.6	42
83	Hypothalamic Structural and Functional Imbalances in Anorexia Nervosa. Neuroendocrinology, 2020, 110, 552-562.	2.5	41
84	Loss of Magel2 impairs the development of hypothalamic Anorexigenic circuits. Human Molecular Genetics, 2016, 25, 3208-3215.	2.9	40
85	Astrocytes Reverted to a Neural Progenitor-like State with Transforming Growth Factor Alpha Are Sensitized to Cancerous Transformation. Stem Cells, 2009, 27, 2373-2382.	3.2	39
86	Physical activity: benefit or weakness in metabolic adaptations in a mouse model of chronic food restriction?. American Journal of Physiology - Endocrinology and Metabolism, 2015, 308, E241-E255.	3.5	39
87	Sustained Alterations of Hypothalamic Tanycytes During Posttraumatic Hypopituitarism in Male Mice. Endocrinology, 2014, 155, 1887-1898.	2.8	37
88	Differential Distribution of erbB Receptors in Human Glioblastoma Multiforme: Expression of erbB3 in CD133-Positive Putative Cancer Stem Cells. Journal of Neuropathology and Experimental Neurology, 2010, 69, 606-622.	1.7	36
89	Suppression of \hat{I}^21 -Integrin in Gonadotropin-Releasing Hormone Cells Disrupts Migration and Axonal Extension Resulting in Severe Reproductive Alterations. Journal of Neuroscience, 2012, 32, 16992-17002.	3.6	34
90	MCH Regulates SIRT1/FoxO1 and Reduces POMC Neuronal Activity to Induce Hyperphagia, Adiposity, and Glucose Intolerance. Diabetes, 2019, 68, 2210-2222.	0.6	34

#	Article	IF	Citations
91	Multifaceted actions of melanin-concentrating hormone on mammalian energy homeostasis. Nature Reviews Endocrinology, 2021, 17, 745-755.	9.6	34
92	Variation of Endothelial Nitric Oxide Synthase Synthesis in the Median Eminence during the Rat Estrous Cycle: An Additional Argument for the Implication of Vascular Blood Vessel in the Control of GnRH Release. Endocrinology, 2001, 142, 4288-4294.	2.8	33
93	Semaphorins in the development, homeostasis and disease of hormone systems. Seminars in Cell and Developmental Biology, 2013, 24, 190-198.	5.0	33
94	Estradiol induces physical association of neuronal nitric oxide synthase with NMDA receptor and promotes nitric oxide formation via estrogen receptor activation in primary neuronal cultures. Journal of Neurochemistry, 2009, 109, 214-224.	3.9	32
95	ERK phosphorylation in intact, adult brain by α2-adrenergic transactivation of EGF receptors. Neurochemistry International, 2009, 55, 593-600.	3.8	31
96	The orphan GPR50 receptor promotes constitutive $TGF\hat{l}^2$ receptor signaling and protects against cancer development. Nature Communications, 2018, 9, 1216.	12.8	31
97	Tanycytic networks mediate energy balance by feeding lactate to glucose-insensitive POMC neurons. Journal of Clinical Investigation, 2021, 131, .	8.2	31
98	Inhibition of carnitine palmitoyltransferase 1A in hepatic stellate cells protects against fibrosis. Journal of Hepatology, 2022, 77, 15-28.	3.7	31
99	\hat{l}_{\pm} -Adrenergic stimulation of ERK phosphorylation in astrocytes is $\hat{l}_{\pm}2$ -specific and may be mediated by transactivation. Brain Research, 2003, 978, 65-71.	2.2	30
100	Neuroanatomical distribution of the orphan GPR50 receptor in adult sheep and rodent brains. Journal of Neuroendocrinology, 2012, 24, 798-808.	2.6	30
101	Transforming growth factor alpha acts as a gliatrophin for mouse and human astrocytes. Oncogene, 2006, 25, 4076-4085.	5.9	29
102	Gliotransmission by Prostaglandin E2: A Prerequisite for GnRH Neuronal Function?. Frontiers in Endocrinology, 2011, 2, 91.	3.5	28
103	Tanycytes control hypothalamic liraglutide uptake and its anti-obesity actions. Cell Metabolism, 2022, 34, 1054-1063.e7.	16.2	28
104	Phosphorylation of <i>N</i> -Methyl- <scp>d</scp> -Aspartic Acid Receptor-Associated Neuronal Nitric Oxide Synthase Depends on Estrogens and Modulates Hypothalamic Nitric Oxide Production during the Ovarian Cycle. Endocrinology, 2010, 151, 2723-2735.	2.8	27
105	NF- $\hat{\mathbb{P}}$ B signaling in tanycytes mediates inflammation-induced anorexia. Molecular Metabolism, 2020, 39, 101022.	6.5	27
106	Estradiol Coupling to Endothelial Nitric Oxide Stimulates Gonadotropin-Releasing Hormone Release from Rat Median Eminence Via a Membrane Receptor. Endocrinology, 1999, 140, 652-659.	2.8	27
107	Interleukin-10 stimulation of corticotrophin releasing factor median eminence in rats: evidence for dependence upon nitric oxide production. Neuroscience Letters, 1998, 256, 167-170.	2.1	25
108	\hat{l} 4-Opioid receptor mRNA expression in proopiomelanocortin neurons of the rat arcuate nucleus. Molecular Brain Research, 1999, 70, 155-158.	2.3	25

#	Article	IF	Citations
109	ErbB receptor signaling in astrocytes: A mediator of neuron-glia communication in the mature central nervous system. Neurochemistry International, 2010, 57, 344-358.	3.8	25
110	Isolation and Culture of Human Astrocytes. Methods in Molecular Biology, 2012, 814, 137-151.	0.9	25
111	Flipping the tanycyte switch: how circulating signals gain direct access to the metabolic brain. Aging, 2013, 5, 332-334.	3.1	25
112	GnRH neurons recruit astrocytes in infancy to facilitate network integration and sexual maturation. Nature Neuroscience, 2021, 24, 1660-1672.	14.8	25
113	Leptin Controls Parasympathetic Wiring of the Pancreas during Embryonic Life. Cell Reports, 2016, 15, 36-44.	6.4	24
114	Distribution and Diurnal Variations of the Mu Opioid Receptor Expression in the Arcuate Nucleus of the Male Rat. Neuroendocrinology, 1998, 67, 94-100.	2.5	23
115	Lipoprotein lipase in hypothalamus is a key regulator of body weight gain and glucose homeostasis in mice. Diabetologia, 2017, 60, 1314-1324.	6.3	23
116	Seasonal reorganization of hypothalamic neurogenic niche in adult sheep. Brain Structure and Function, 2018, 223, 91-109.	2.3	23
117	Vascular pulsations stimulating nitric oxide release during cyclic exercise may benefit health: A molecular approach (Review). International Journal of Molecular Medicine, 2001, 7, 119-29.	4.0	22
118	Neuropilinâ€1 expression in GnRH neurons regulates prepubertal weight gain and sexual attraction. EMBO Journal, 2020, 39, e104633.	7.8	22
119	Regulation of puberty. Current Opinion in Endocrinology, Diabetes and Obesity, 2001, 8, 154-160.	0.6	21
120	Glial Endozepines Reverse High-Fat Diet-Induced Obesity by Enhancing Hypothalamic Response to Peripheral Leptin. Molecular Neurobiology, 2020, 57, 3307-3333.	4.0	20
121	Evidence for a Spontaneous Nitric Oxide Release from the Rat Median Eminence: Influence on Gonadotropin-Releasing Hormone Release. Endocrinology, 2001, 142, 2343-2350.	2.8	20
122	Non-secreting pituitary tumours characterised by enhanced expression of YAP/TAZ. Endocrine-Related Cancer, 2019, 26, 215-225.	3.1	19
123	Circulating ghrelin crosses the blood-cerebrospinal fluid barrier via growth hormone secretagogue receptor dependent and independent mechanisms. Molecular and Cellular Endocrinology, 2021, 538, 111449.	3.2	19
124	Galanin modulates the activity of proopiomelanocortin neurons in the isolated mediobasal hypothalamus of the male rat. Neuroscience, 2002, 112, 475-485.	2.3	18
125	Growth-Associated Protein-43 Messenger Ribonucleic Acid Expression in Gonadotropin-Releasing Hormone Neurons during the Rat Estrous Cycle. Endocrinology, 2000, 141, 1648-1657.	2.8	17
126	Evidence that $TGF\hat{l}^2$ May Directly Modulate POMC mRNA Expression in the Female Rat Arcuate Nucleus. Endocrinology, 2001, 142, 4055-4065.	2.8	17

#	Article	IF	Citations
127	Tanycytes in the infundibular nucleus and median eminence and their role in the blood–brain barrier. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2021, 180, 253-273.	1.8	17
128	The cryptic gonadotropin-releasing hormone neuronal system of human basal ganglia. ELife, 2021, 10, .	6.0	16
129	Inhibition of ATG3 ameliorates liver steatosis by increasing mitochondrial function. Journal of Hepatology, 2022, 76, 11-24.	3.7	16
130	Glial endozepines and energy balance: Old peptides with new tricks. Glia, 2021, 69, 1079-1093.	4.9	15
131	The Neurobiology of Female Puberty. Hormone Research in Paediatrics, 2003, 60, 15-20.	1.8	14
132	NO-dependent protective effect of VEGF against excitotoxicity on layer VI of the developing cerebral cortex. Neurobiology of Disease, 2012, 45, 871-886.	4.4	14
133	Image-guided phenotyping of ovariectomized mice: altered functional connectivity, cognition, myelination, and dopaminergic functionality. Neurobiology of Aging, 2019, 74, 77-89.	3.1	14
134	Molecular targets for endogenous glial cell line-derived neurotrophic factor modulation in striatal parvalbumin interneurons. Brain Communications, 2020, 2, fcaa105.	3.3	13
135	Melatonin drugs inhibit SARS-CoV-2 entry into the brain and virus-induced damage of cerebral small vessels. Cellular and Molecular Life Sciences, 2022, 79, .	5.4	13
136	Phenotypic and molecular characterization of proliferating and differentiated GnRH-expressing GnV-3 cells. Molecular and Cellular Endocrinology, 2011, 332, 97-105.	3.2	12
137	The KiNG of reproduction: Kisspeptin/ nNOS interactions shaping hypothalamic GnRH release. Molecular and Cellular Endocrinology, 2021, 532, 111302.	3.2	12
138	Expression of GalR1 and GalR2 Galanin Receptor Messenger Ribonucleic Acid in Proopiomelanocortin Neurons of the Rat Arcuate Nucleus: Effect of Testosterone. Endocrinology, 2000, 141, 1780-1794.	2.8	12
139	GPR50-Ctail cleavage and nuclear translocation: a new signal transduction mode for G protein-coupled receptors. Cellular and Molecular Life Sciences, 2020, 77, 5189-5205.	5.4	11
140	Amyloid Beta Peptide Is an Endogenous Negative Allosteric Modulator of Leptin Receptor. Neuroendocrinology, 2021, 111, 370-387.	2.5	11
141	Estradiol-stimulated nitric oxide release in human granulocytes is dependent on intracellular calcium transients: evidence of a cell surface estrogen receptor. Blood, 2000, 95, 3951-3958.	1.4	11
142	The polygamous GnRH neuron: Astrocytic and tanycytic communication with a neuroendocrine neuronal population. Journal of Neuroendocrinology, 2022, 34, e13104.	2.6	11
143	Sstr2A: a relevant target for the delivery of genes into human glioblastoma cells using fiber-modified adenoviral vectors. Gene Therapy, 2013, 20, 283-297.	4.5	10
144	Preclinical Assessment of Leptin Transport into the Cerebrospinal Fluid in Dietâ€Induced Obese Minipigs. Obesity, 2019, 27, 950-956.	3.0	10

#	Article	IF	CITATIONS
145	Regulation by Gonadal Steroids of the mRNA Encoding for a Type I Receptor for TGF- \hat{l}^2 in the Female Rat Hypothalamus. Neuroendocrinology, 2002, 76, 1-7.	2.5	9
146	GnRH Neurons Directly Listen to the Periphery. Endocrinology, 2011, 152, 3589-3591.	2.8	9
147	Sirt3 in POMC neurons controls energy balance in a sex- and diet-dependent manner. Redox Biology, 2021, 41, 101945.	9.0	9
148	$\hat{l}^{1}\!\!/\!\!4$ Opioid receptor mRNA expression in neuronal nitric oxide synthase-immunopositive preoptic area neurons. Molecular Brain Research, 2000, 80, 46-52.	2.3	8
149	Allopregnanolone Prevents Dieldrin-Induced NMDA Receptor Internalization and Neurotoxicity by Preserving GABAA Receptor Function. Endocrinology, 2012, 153, 847-860.	2.8	8
150	Neuroendocrine Control of Reproduction. , 2012, , 197-235.		8
151	Selective Depletion of Adult GFAP-Expressing Tanycytes Leads to Hypogonadotropic Hypogonadism in Males. Frontiers in Endocrinology, 2022, 13, 869019.	3 . 5	8
152	Plasticity of neuroendocrine systems. European Journal of Neuroscience, 2010, 32, 1987-1988.	2.6	7
153	A Molecular Predictor Reassesses Classification of Human Grade II/III Gliomas. PLoS ONE, 2013, 8, e66574.	2.5	7
154	Is LRP2 Involved in Leptin Transport over the Blood-Brain Barrier and Development of Obesity?. International Journal of Molecular Sciences, 2021, 22, 4998.	4.1	7
155	Long-term ovarian hormone deprivation alters functional connectivity, brain neurochemical profile and white matter integrity in the Tg2576 amyloid mouse model of Alzheimer's disease. Neurobiology of Aging, 2021, 102, 139-150.	3.1	7
156	Growth-Associated Protein-43 Messenger Ribonucleic Acid Expression in Gonadotropin-Releasing Hormone Neurons during the Rat Estrous Cycle. Endocrinology, 2000, 141, 1648-1657.	2.8	7
157	Hypothalamic microRNAs flip the switch for fertility. Oncotarget, 2017, 8, 8993-8994.	1.8	7
158	Defining Reference Ranges for Serum Anti-Müllerian Hormone on a Large Cohort of Normozoospermic Adult Men Highlights New Potential Physiological Functions of AMH on FSH Secretion and Sperm Motility. Journal of Clinical Endocrinology and Metabolism, 2022, 107, 1878-1887.	3.6	7
159	Programming the Brain from the Womb: Maternal Obesity Perturbs the Hypothalamic Blood-Brain Barrier. Endocrinology, 2016, 157, 2201-2203.	2.8	6
160	When Size Matters: How Astrocytic Processes Shape Metabolism. Cell Metabolism, 2017, 25, 995-996.	16.2	6
161	Short regulatory DNA sequences to target brain endothelial cells for gene therapy. Journal of Cerebral Blood Flow and Metabolism, 2022, 42, 104-120.	4.3	6
162	Variation of Endothelial Nitric Oxide Synthase Synthesis in the Median Eminence during the Rat Estrous Cycle: An Additional Argument for the Implication of Vascular Blood Vessel in the Control of GnRH Release. Endocrinology, 2001, 142, 4288-4294.	2.8	6

#	Article	lF	CITATIONS
163	Towards Understanding the Neurobiology of Mammalian Puberty: Genetic, Genomic and Proteomic Approaches., 2005,, 47-60.		5
164	Arterial Spin Labeling and Central Precocious Puberty. Clinical Neuroradiology, 2020, 30, 137-144.	1.9	5
165	Evidence that TGFÂ May Directly Modulate POMC mRNA Expression in the Female Rat Arcuate Nucleus. Endocrinology, 2001, 142, 4055-4065.	2.8	5
166	Tanycyte-like cells form a blood-cerebrospinal fluid barrier in the circumventricular organs of the mouse brain. Journal of Comparative Neurology, 2013, 521, spc1-spc1.	1.6	4
167	Neurogenesis and Gliogenesis in the Postnatal Hypothalamus: A New Level of Plasticity for the Regulation of Hypothalamic Function?. Pancreatic Islet Biology, 2014, , 105-136.	0.3	4
168	A kiss to set the rhythm. ELife, 2016, 5, .	6.0	4
169	Glial–neuronal–endothelial interactions and the neuroendocrine control of GnRH secretion. Advances in Molecular and Cell Biology, 2003, 31, 199-214.	0.1	3
170	Coexpression profiles reveal hidden gene networks. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 2563-2565.	7.1	3
171	Des acteurs clés de la régulation de la sécrétion de GnRH : les cellules gliales et endothéliales de l'hypothalamus. Société De Biologie Journal, 2004, 198, 68-72.	0.3	2
172	New Developments in Reproductive and Stress Neuroendocrinology. Neuroendocrinology, 2019, 109, 191-192.	2.5	2
173	Unveiling the Importance of Tanycytes in the Control of the Dialogue Between the Brain and the Periphery. Masterclass in Neuroendocrinology, 2021, , 255-284.	0.1	2
174	Glial control of neuronal function. Nature Reviews Endocrinology, 2022, 18, 195-195.	9.6	2
175	Gonadotropin-Releasing Hormone and Puberty. , 2003, , 165-171.		1
176	GnRH Neurons: The Return of the Rat. Endocrinology, 2021, 162, .	2.8	1
177	Glycemic control: Tanycytes march to the beat of the suprachiasmatic drummer. Current Biology, 2022, 32, R173-R176.	3.9	1
178	Les neurones produisant laÂgonadolibérine sculptent leur environnement neuroglial dans la petite enfance. Medecine/Sciences, 2022, 38, 428-430.	0.2	1
179	Phenotyping of nNOS neurons in the postnatal and adult female mouse hypothalamus. Journal of Comparative Neurology, 2017, 525, spc1.	1.6	0
180	Ghrelin transport across the blood–cerebrospinal fluid barrier occurs in a ghrelin receptor independent-manner. IBRO Reports, 2019, 6, S261.	0.3	0

#	Article	IF	CITATIONS
181	Reproductive Function During Chronodisruption: Model of Shiftwork in Rodents. Endocrinology, 2020, 161, .	2.8	0
182	International Neuroendocrine Federation: Year 2020 in Review. Journal of Neuroendocrinology, 2021, 33, e13059.	2.6	0
183	Dynamic Control of Neural Reproductive Centers by Endothelial Cells. , 2015, , 76-97.		O
184	Le fÅ"tus et son environnement : rÃ1e des professionnels pour préserver le capital santé des adultes de demain. Bulletin De L'Academie Nationale De Medecine, 2018, 202, 1027-1035.	0.0	0
185	Efficacy of lanreotide $120 \hat{a} \in \%$ mg primary therapy on tumour shrinkage and ophthalmologic symptoms in acromegaly after 1 month. Clinical Endocrinology, 2022, , .	2.4	0
186	Sowing SARS-CoV-2 to reap neurodegeneration: A hamster study. EBioMedicine, 2022, 80, 104071.	6.1	0