Cinzia Casiraghi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1045693/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Probing the Nature of Defects in Graphene by Raman Spectroscopy. Nano Letters, 2012, 12, 3925-3930.	4.5	1,696
2	Breakdown of the adiabatic Born–Oppenheimer approximation in graphene. Nature Materials, 2007, 6, 198-201.	13.3	1,229
3	Synthesis of structurally well-defined and liquid-phase-processable graphene nanoribbons. Nature Chemistry, 2014, 6, 126-132.	6.6	468
4	Water-based and biocompatible 2D crystal inks for all-inkjet-printed heterostructures. Nature Nanotechnology, 2017, 12, 343-350.	15.6	440
5	Raman Spectroscopy of Graphene and Bilayer under Biaxial Strain: Bubbles and Balloons. Nano Letters, 2012, 12, 617-621.	4.5	431
6	The Ultrasmoothness of Diamond-like Carbon Surfaces. Science, 2005, 309, 1545-1548.	6.0	286
7	Raman study on defective graphene: Effect of the excitation energy, type, and amount of defects. Physical Review B, 2013, 88, .	1.1	279
8	Raman Spectroscopy of Boron-Doped Single-Layer Graphene. ACS Nano, 2012, 6, 6293-6300.	7.3	245
9	Raman Modes of MoS ₂ Used as Fingerprint of van der Waals Interactions in 2-D Crystal-Based Heterostructures. ACS Nano, 2014, 8, 9914-9924.	7.3	201
10	Electrochemical Behavior of Monolayer and Bilayer Graphene. ACS Nano, 2011, 5, 8809-8815.	7.3	148
11	Viscoelastic surface electrode arrays to interface with viscoelastic tissues. Nature Nanotechnology, 2021, 16, 1019-1029.	15.6	144
12	Bottom-Up Synthesis of Liquid-Phase-Processable Graphene Nanoribbons with Near-Infrared Absorption. ACS Nano, 2014, 8, 11622-11630.	7.3	138
13	Low-voltage 2D materials-based printed field-effect transistors for integrated digital and analog electronics on paper. Nature Communications, 2020, 11, 3566.	5.8	120
14	Nanoscale insight into the exfoliation mechanism of graphene with organic dyes: effect of charge, dipole and molecular structure. Nanoscale, 2013, 5, 4205.	2.8	116
15	Raman Fingerprint of Aligned Graphene/h-BN Superlattices. Nano Letters, 2013, 13, 5242-5246.	4.5	102
16	Flexible, Print-in-Place 1D–2D Thin-Film Transistors Using Aerosol Jet Printing. ACS Nano, 2019, 13, 11263-11272.	7.3	96
17	All-2D Material Inkjet-Printed Capacitors: Toward Fully Printed Integrated Circuits. ACS Nano, 2019, 13, 54-60.	7.3	95
18	Harnessing the Liquidâ€Phase Exfoliation of Graphene Using Aliphatic Compounds: A Supramolecular Approach. Angewandte Chemie - International Edition, 2014, 53, 10355-10361.	7.2	92

#	Article	IF	CITATIONS
19	A Supramolecular Strategy to Leverage the Liquidâ€Phase Exfoliation of Graphene in the Presence of Surfactants: Unraveling the Role of the Length of Fatty Acids. Small, 2015, 11, 1691-1702.	5.2	87
20	Poly(ethylene oxide) Functionalized Graphene Nanoribbons with Excellent Solution Processability. Journal of the American Chemical Society, 2016, 138, 10136-10139.	6.6	83
21	Raman Fingerprints of Atomically Precise Graphene Nanoribbons. Nano Letters, 2016, 16, 3442-3447.	4.5	83
22	Facile covalent functionalization of graphene oxide using microwaves: bottom-up development of functional graphitic materials. Journal of Materials Chemistry, 2010, 20, 9052.	6.7	82
23	Graphene and other 2D materials: a multidisciplinary analysis to uncover the hidden potential as cancer theranostics. Theranostics, 2020, 10, 5435-5488.	4.6	80
24	Enhancing the Liquid-Phase Exfoliation of Graphene in Organic Solvents upon Addition of n-Octylbenzene. Scientific Reports, 2015, 5, 16684.	1.6	79
25	Water-based and inkjet printable inks made by electrochemically exfoliated graphene. Carbon, 2019, 149, 213-221.	5.4	73
26	Dispersant-assisted liquid-phase exfoliation of 2D materials beyond graphene. Nanoscale, 2021, 13, 460-484.	2.8	69
27	Raman Fingerprints of Graphene Produced by Anodic Electrochemical Exfoliation. Nano Letters, 2020, 20, 3411-3419.	4.5	59
28	The influence of few-layer graphene on the gas permeability of the high-free-volume polymer PIM-1. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374, 20150031.	1.6	51
29	Printed graphene/WS ₂ battery-free wireless photosensor on papers. 2D Materials, 2020, 7, 024004.	2.0	51
30	A Curved Graphene Nanoribbon with Multi-Edge Structure and High Intrinsic Charge Carrier Mobility. Journal of the American Chemical Society, 2020, 142, 18293-18298.	6.6	50
31	Single―and Double‧ided Chemical Functionalization of Bilayer Graphene. Small, 2013, 9, 631-639.	5.2	49
32	Dielectric nanosheets made by liquid-phase exfoliation in water and their use in graphene-based electronics. 2D Materials, 2014, 1, 011012.	2.0	49
33	Intrinsic Properties of Single Graphene Nanoribbons in Solution: Synthetic and Spectroscopic Studies. Journal of the American Chemical Society, 2018, 140, 10416-10420.	6.6	48
34	Self-catalytic membrane photo-reactor made of carbon nitride nanosheets. Journal of Materials Chemistry A, 2016, 4, 11666-11671.	5.2	47
35	High-Yield Production and Transfer of Graphene Flakes Obtained by Anodic Bonding. ACS Nano, 2011, 5, 7700-7706.	7.3	43
36	Edge Functionalization of Structurally Defined Graphene Nanoribbons for Modulating the Self-Assembled Structures, Journal of the American Chemical Society, 2017, 139, 16454-16457	6.6	43

#	Article	IF	CITATIONS
37	2p or not 2p: tuppence-based SERS for the detection of illicit materials. Analyst, The, 2013, 138, 118-122.	1.7	41
38	Raman spectroscopy of highly pressurized graphene membranes. Applied Physics Letters, 2016, 108, .	1.5	39
39	Pulsed laser deposition of diamondlike carbon films on polycarbonate. Journal of Applied Physics, 2003, 93, 859-865.	1.1	37
40	Electron-beam-induced direct etching of graphene. Carbon, 2013, 64, 84-91.	5.4	36
41	Synthesis and characterization of composite membranes made of graphene and polymers of intrinsic microporosity. Carbon, 2016, 102, 357-366.	5.4	34
42	Photocurrent study of all-printed photodetectors on paper made of different transition metal dichalcogenide nanosheets. Flexible and Printed Electronics, 2018, 3, 034005.	1.5	31
43	Laser Ablation of Poly(lactic acid) Sheets for the Rapid Prototyping of Sustainable, Single-Use, Disposable Medical Microcomponents. ACS Sustainable Chemistry and Engineering, 2018, 6, 4899-4908.	3.2	26
44	Raman intensity of graphene. Physica Status Solidi (B): Basic Research, 2011, 248, 2593-2597.	0.7	24
45	Perchlorination of Coronene Enhances its Propensity for Selfâ€Assembly on Graphene. ChemPhysChem, 2016, 17, 352-357.	1.0	24
46	Stable, concentrated, biocompatible, and defect-free graphene dispersions with positive charge. Nanoscale, 2020, 12, 12383-12394.	2.8	23
47	Gamma Radiation-Induced Oxidation, Doping, and Etching of Two-Dimensional MoS2 Crystals. Journal of Physical Chemistry C, 2021, 125, 4211-4222.	1.5	22
48	All-Inkjet-Printed Graphene-Gated Organic Electrochemical Transistors on Polymeric Foil as Highly Sensitive Enzymatic Biosensors. ACS Applied Nano Materials, 2022, 5, 1664-1673.	2.4	22
49	Graphene oxide nanosheets modulate spinal glutamatergic transmission and modify locomotor behaviour in an <i>in vivo</i> zebrafish model. Nanoscale Horizons, 2020, 5, 1250-1263.	4.1	21
50	A review on sustainable production of graphene and related life cycle assessment. 2D Materials, 2022, 9, 012002.	2.0	21
51	Tunable D peak in gated graphene. Nano Research, 2014, 7, 338-344.	5.8	20
52	Exploiting the Surface Properties of Graphene for Polymorph Selectivity. ACS Nano, 2020, 14, 10394-10401.	7.3	18
53	Inkjet-printed low-dimensional materials-based complementary electronic circuits on paper. Npj 2D Materials and Applications, 2021, 5, .	3.9	16
54	Twoâ€Dimensional Transition Metal Dichalcogenides Trigger Trained Immunity in Human Macrophages through Epigenetic and Metabolic Pathways. Small, 2022, 18, e2107816.	5.2	16

#	Article	IF	CITATIONS
55	Inkjet-printed graphene Hall mobility measurements and low-frequency noise characterization. Nanoscale, 2020, 12, 6708-6716.	2.8	14
56	Vibrational fingerprints of residual polymer on transferred CVD-graphene. Carbon, 2017, 117, 473-475.	5.4	13
57	Charge-tunable graphene dispersions in water made with amphoteric pyrene derivatives. Molecular Systems Design and Engineering, 2019, 4, 503-510.	1.7	13
58	Enhanced liquid phase exfoliation of graphene in water using an insoluble bis-pyrene stabiliser. Faraday Discussions, 2021, 227, 46-60.	1.6	12
59	Insights into the exfoliation mechanism of pyrene-assisted liquid phase exfoliation of graphene from lateral size-thickness characterisation. Carbon, 2022, 186, 550-559.	5.4	12
60	Growing N-doped multiphase TiO 2 nanocomposites on reduced graphene oxide: Characterization and activity under low energy visible radiation. Journal of Environmental Chemical Engineering, 2017, 5, 5091-5098.	3.3	11
61	Intercalation, decomposition, entrapment – a new route to graphene nanobubbles. Physical Chemistry Chemical Physics, 2020, 22, 7606-7615.	1.3	10
62	Palladium catalysed C–H arylation of pyrenes: access to a new class of exfoliating agents for water-based graphene dispersions. Chemical Science, 2020, 11, 2472-2478.	3.7	10
63	Gas Blow Coating: A Deposition Technique To Control the Crystal Morphology in Thin Films of Organic Semiconductors. ACS Omega, 2019, 4, 11657-11662.	1.6	8
64	Multiwavelength Raman spectroscopy of ultranarrow nanoribbons made by solution-mediated bottom-up approach. Physical Review B, 2019, 100, .	1.1	8
65	Aqueous dispersions of nanostructures formed through the self-assembly of iminolipids with exchangeable hydrophobic termini. Physical Chemistry Chemical Physics, 2017, 19, 17036-17043.	1.3	7
66	International interlaboratory comparison of Raman spectroscopic analysis of CVD-grown graphene. 2D Materials, 2022, 9, 035010.	2.0	7
67	Synthesis of 2D anatase TiO ₂ with highly reactive facets by fluorine-free topochemical conversion of 1T-TiS ₂ nanosheets. Journal of Materials Chemistry A, 2022, 10, 13884-13894.	5.2	7
68	The influence of crystal thickness and interlayer interactions on the properties of heavy ion irradiated MoS ₂ . 2D Materials, 2020, 7, 035011.	2.0	6
69	Selective polymorphism of α-glycine by acoustic levitation. CrystEngComm, 2020, 22, 7075-7081.	1.3	5
70	In situ probing of the thermal treatment of h-BN towards exfoliation. Nanotechnology, 2021, 32, 105704.	1.3	5
71	Real-time monitoring of crystallization from solution by using an interdigitated array electrode sensor. Nanoscale Horizons, 2021, 6, 468-473.	4.1	4
72	1/ <i>f</i> Noise Characterization of Bilayer MoS ₂ Fieldâ€Effect Transistors on Paper with Inkjetâ€Printed Contacts and hBN Dielectrics. Advanced Electronic Materials, 2021, 7, 2100283.	2.6	4

#	Article	IF	CITATIONS
73	2D materials production and generation of functional inks: general discussion. Faraday Discussions, 2021, 227, 141-162.	1.6	2
74	Hybrid MoS2/PEDOT:PSS transporting layers for interface engineering of nanoplatelet-based light-emitting diodes. Dalton Transactions, 2021, 50, 9208-9214.	1.6	2
75	Electrolyte-Gated Organic Field-Effect Transistors for Quantitative Monitoring of the Molecular Dynamics of Crystallization at the Solid–Liquid Interface. Nano Letters, 2022, 22, 2643-2649.	4.5	2
76	Graphene: A Supramolecular Strategy to Leverage the Liquid-Phase Exfoliation of Graphene in the Presence of Surfactants: Unraveling the Role of the Length of Fatty Acids (Small 14/2015). Small, 2015, 11, 1736-1736.	5.2	1
77	Perchlorination of Coronene Enhances its Propensity for Selfâ€Assembly on Graphene. ChemPhysChem, 2016, 17, 330-330.	1.0	1
78	Water-based 2D-crystal Inks: From formulation engineering to printed devices. , 2017, , .		0
79	Printing h-BN Gate Dielectric for Flexible, Low-hysteresis Carbon Nanotube Thin-Film Transistors at Low Temperature. , 2019, , .		0