
Zhilei Ge

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1045554/publications.pdf Version: 2024-02-01

7.00 51 0 5

#	Article	IF	CITATIONS
1	Hybridization Chain Reaction Amplification of MicroRNA Detection with a Tetrahedral DNA Nanostructure-Based Electrochemical Biosensor. Analytical Chemistry, 2014, 86, 2124-2130.	6.5	460
2	DNA origami nanostructures can exhibit preferential renal uptake and alleviate acute kidney injury. Nature Biomedical Engineering, 2018, 2, 865-877.	22.5	297
3	Concept and Development of Framework Nucleic Acids. Journal of the American Chemical Society, 2018, 140, 17808-17819.	13.7	202
4	Programming nanoparticle valence bonds with single-stranded DNA encoders. Nature Materials, 2020, 19, 781-788.	27.5	166
5	DNA Framework-Programmed Cell Capture via Topology-Engineered Receptor–Ligand Interactions. Journal of the American Chemical Society, 2019, 141, 18910-18915.	13.7	122
6	Charge Transport within a Three-Dimensional DNA Nanostructure Framework. Journal of the American Chemical Society, 2012, 134, 13148-13151.	13.7	118
7	Treating Acute Kidney Injury with Antioxidative Black Phosphorus Nanosheets. Nano Letters, 2020, 20, 1447-1454.	9.1	111
8	Programming Cell Adhesion for On-Chip Sequential Boolean Logic Functions. Journal of the American Chemical Society, 2017, 139, 10176-10179.	13.7	103
9	Programming Cell–Cell Communications with Engineered Cell Origami Clusters. Journal of the American Chemical Society, 2020, 142, 8800-8808.	13.7	91
10	Designer DNA nanostructures for therapeutics. CheM, 2021, 7, 1156-1179.	11.7	91
11	Valencyâ€Controlled Framework Nucleic Acid Signal Amplifiers. Angewandte Chemie - International Edition, 2018, 57, 7131-7135.	13.8	85
12	Electrochemical single nucleotide polymorphisms genotyping on surface immobilized three-dimensional branched DNA nanostructure. Science China Chemistry, 2011, 54, 1273-1276.	8.2	80
13	DNA Nanoribbonâ€Templated Selfâ€Assembly of Ultrasmall Fluorescent Copper Nanoclusters with Enhanced Luminescence. Angewandte Chemie - International Edition, 2020, 59, 11836-11844.	13.8	60
14	DNA Origamiâ€Enabled Engineering of Ligand–Drug Conjugates for Targeted Drug Delivery. Small, 2020, 16, e1904857.	10.0	58
15	Sequential Therapy of Acute Kidney Injury with a DNA Nanodevice. Nano Letters, 2021, 21, 4394-4402.	9.1	56
16	Self-Assembly of Metallo-Nucleoside Hydrogels for Injectable Materials That Promote Wound Closure. ACS Applied Materials & Interfaces, 2019, 11, 19743-19750.	8.0	55
17	Ultrafast DNA Sensors with DNA Framework-Bridged Hybridization Reactions. Journal of the American Chemical Society, 2020, 142, 9975-9981.	13.7	54
18	Encapsulation and release of living tumor cells using hydrogels with the hybridization chain reaction. Nature Protocols, 2020, 15, 2163-2185.	12.0	54

Zhilei Ge

#	Article	IF	CITATIONS
19	Responsive optical probes for deep-tissue imaging: Photoacoustics and second near-infrared fluorescence. Advanced Drug Delivery Reviews, 2021, 173, 141-163.	13.7	49
20	Carbon Nanotubes Multifunctionalized by Rolling Circle Amplification and Their Application for Highly Sensitive Detection of Cancer Markers. Small, 2013, 9, 2595-2601.	10.0	45
21	Bacterial Analysis Using an Electrochemical DNA Biosensor with Poly-Adenine-Mediated DNA Self-Assembly. ACS Applied Materials & Interfaces, 2018, 10, 6895-6903.	8.0	45
22	Polyvalent DNA–graphenenanosheets "click―conjugates. Nanoscale, 2012, 4, 394-399.	5.6	37
23	Fractal Nanoplasmonic Labels for Supermultiplex Imaging in Single Cells. Journal of the American Chemical Society, 2019, 141, 11938-11946.	13.7	37
24	DNA-Based Hybrid Hydrogels Sustain Water-Insoluble Ophthalmic Therapeutic Delivery against Allergic Conjunctivitis. ACS Applied Materials & Interfaces, 2019, 11, 26704-26710.	8.0	35
25	Poly-adenine-mediated spherical nucleic acids for strand displacement-based DNA/RNA detection. Biosensors and Bioelectronics, 2019, 127, 85-91.	10.1	33
26	Nanoparticleâ€Assisted Alignment of Carbon Nanotubes on DNA Origami. Angewandte Chemie - International Edition, 2020, 59, 4892-4896.	13.8	33
27	Framework Nucleic Acid-Mediated Pull-Down MicroRNA Detection with Hybridization Chain Reaction Amplification. ACS Applied Bio Materials, 2018, 1, 859-864.	4.6	28
28	Redox Engineering of Cytochrome c using DNA Nanostructure-Based Charged Encapsulation and Spatial Control. ACS Applied Materials & Interfaces, 2019, 11, 13874-13880.	8.0	27
29	Constructing Submonolayer DNA Origami Scaffold on Gold Electrode for Wiring of Redox Enzymatic Cascade Pathways. ACS Applied Materials & Interfaces, 2019, 11, 13881-13887.	8.0	25
30	Dynamic regulation of DNA nanostructures by noncanonical nucleic acids. NPG Asia Materials, 2021, 13, .	7.9	19
31	Epitope Binning Assay Using an Electron Transfer-Modulated Aptamer Sensor. ACS Applied Materials & Interfaces, 2018, 10, 341-349.	8.0	17
32	Framework Nucleic Acid-Enabled Programming of Electrochemical Catalytic Properties of Artificial Enzymes. ACS Applied Materials & Interfaces, 2019, 11, 21859-21864.	8.0	16
33	Unbiased Enrichment of Circulating Tumor Cells Via DNAzyme-Catalyzed Proximal Protein Biotinylation. Nano Letters, 2022, 22, 1618-1625.	9.1	16
34	Reconstructing Soma–Soma Synapse-like Vesicular Exocytosis with DNA Origami. ACS Central Science, 2021, 7, 1400-1407.	11.3	14
35	Molecular Visualization of Early‣tage Acute Kidney Injury with a DNA Framework Nanodevice. Advanced Science, 2022, 9, e2105947.	11.2	12
36	Poly-Adenine-Engineered Gold Nanogaps for SERS Nanostructures. ACS Applied Nano Materials, 2019, 2, 3501-3509.	5.0	11

Zhilei Ge

#	Article	IF	CITATIONS
37	Framework Nucleic Acids for Cell Imaging and Therapy. Chemical Research in Chinese Universities, 2020, 36, 1-9.	2.6	11
38	Valencyâ€Controlled Framework Nucleic Acid Signal Amplifiers. Angewandte Chemie, 2018, 130, 7249-7253.	2.0	9
39	Programming folding cooperativity of the dimeric i-motif with DNA frameworks for sensing small pH variations. Chemical Communications, 2021, 57, 3247-3250.	4.1	9
40	Engineering Allosteric Ribozymes to Detect Thiamine Pyrophosphate in Whole Blood. Analytical Chemistry, 2021, 93, 4277-4284.	6.5	9
41	Programming CircLigase Catalysis for DNA Rings and Topologies. Analytical Chemistry, 2021, 93, 1801-1810.	6.5	9
42	Nanoparticleâ€Assisted Alignment of Carbon Nanotubes on DNA Origami. Angewandte Chemie, 2020, 132, 4922-4926.	2.0	7
43	Programming cell communications with pH-responsive DNA nanodevices. Chemical Communications, 2021, 57, 4536-4539.	4.1	6
44	DNA Nanoribbonâ€Templated Selfâ€Assembly of Ultrasmall Fluorescent Copper Nanoclusters with Enhanced Luminescence. Angewandte Chemie, 2020, 132, 11934-11942.	2.0	5
45	Probing the self-assembly process of amphiphilic tetrahedral DNA frameworks. Chemical Communications, 2022, 58, 8352-8355.	4.1	5
46	Rapid Transmembrane Transport of DNA Nanostructures by Chemically Anchoring Artificial Receptors on Cell Membranes. ChemPlusChem, 2019, 84, 323-327.	2.8	3
47	DNA Framework-Programmed Micronano Hierarchy Sensor Interface for Metabolite Analysis in Whole Blood. ACS Applied Bio Materials, 2020, 3, 53-58.	4.6	3
48	Quartz Crystal Microbalance Studies on Surface-Initiated DNA Hybridization Chain Reaction. Acta Chimica Sinica, 2012, 70, 2127.	1.4	2
49	Innentitelbild: Valency ontrolled Framework Nucleic Acid Signal Amplifiers (Angew. Chem. 24/2018). Angewandte Chemie, 2018, 130, 7066-7066.	2.0	0