
Una O'doherty

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10454972/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Rapid manufacturing of non-activated potent CAR T cells. Nature Biomedical Engineering, 2022, 6, 118-128.	11.6	92
2	Naive infection predicts reservoir diversity and is a formidable hurdle to HIV eradication. JCI Insight, 2021, 6, .	2.3	15
3	Femtomolar SARS-CoV-2 Antigen Detection Using the Microbubbling Digital Assay with Smartphone Readout Enables Antigen Burden Quantitation and Tracking. Clinical Chemistry, 2021, 68, 230-239.	1.5	11
4	Interferon-α alters host glycosylation machinery during treated HIV infection. EBioMedicine, 2020, 59, 102945.	2.7	11
5	Next-Generation Sequencing in a Direct Model of HIV Infection Reveals Important Parallels to and Differences from In Vivo Reservoir Dynamics. Journal of Virology, 2020, 94, .	1.5	6
6	Persistence of an intact HIV reservoir in phenotypically naive T cells. JCI Insight, 2020, 5, .	2.3	33
7	Genetic Evidence That Naive T Cells Can Contribute Significantly to the Human Immunodeficiency Virus Intact Reservoir: Time to Re-evaluate Their Role. Clinical Infectious Diseases, 2019, 69, 2236-2237.	2.9	32
8	Heavy metal protease takes a tiki torch to HIV assembly. Nature Immunology, 2019, 20, 668-669.	7.0	3
9	Longitudinal HIV sequencing reveals reservoir expression leading to decay which is obscured by clonal expansion. Nature Communications, 2019, 10, 728.	5.8	149
10	More efficient exchange of sickle red blood cells can be achieved by exchanging the densest red blood cells: An ex vivo proof of concept study. Transfusion and Apheresis Science, 2019, 58, 100-106.	0.5	1
11	Rapid prediction of stem cell mobilization using volume and conductivity data from automated hematology analyzers. Transfusion, 2018, 58, 330-338.	0.8	0
12	Beyond the replication-competent HIV reservoir: transcription and translation-competent reservoirs. Retrovirology, 2018, 15, 18.	0.9	76
13	Measuring integrated HIV DNA ex vivo and in vitro provides insights about how reservoirs are formed and maintained. Retrovirology, 2018, 15, 22.	0.9	35
14	Effect of Short-Term Antiretroviral Therapy Interruption on Levels of Integrated HIV DNA. Journal of Virology, 2018, 92, .	1.5	24
15	Clinical use of lentiviral vectors. Leukemia, 2018, 32, 1529-1541.	3.3	519
16	Quantitation of Integrated HIV Provirus by Pulsed-Field Gel Electrophoresis and Droplet Digital PCR. Journal of Clinical Microbiology, 2018, 56, .	1.8	15
17	Minor Contribution of Chimeric Host-HIV Readthrough Transcripts to the Level of HIV Cell-Associated <i>gag</i> RNA. Journal of Virology, 2016, 90, 1148-1151.	1.5	25
18	A Subset of CD4/CD8 Double-Negative T Cells Expresses HIV Proteins in Patients on Antiretroviral Therapy. Journal of Virology, 2016, 90, 2165-2179.	1.5	54

#	Article	IF	CITATIONS
19	Monitoring Integration over Time Supports a Role for Cytotoxic T Lymphocytes and Ongoing Replication as Determinants of Reservoir Size. Journal of Virology, 2016, 90, 10436-10445.	1.5	20
20	Defective HIV-1 proviruses produce novel protein-coding RNA species in HIV-infected patients on combination antiretroviral therapy. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 8783-8788.	3.3	282
21	Anti-HIV Antibody Responses and the HIV Reservoir Size during Antiretroviral Therapy. PLoS ONE, 2016, 11, e0160192.	1.1	26
22	More Efficient Exchange of Sickle Red Blood Cells Can be Achieved By Exchanging the Densest Red Blood Cells. Blood, 2016, 128, 3856-3856.	0.6	0
23	Quantifying integrated SIV-DNA by repetitive-sampling Alu-gag PCR. Journal of Virus Eradication, 2016, 2, 219-226.	0.3	5
24	A Novel Assay to Measure the Magnitude of the Inducible Viral Reservoir in HIV-infected Individuals. EBioMedicine, 2015, 2, 874-883.	2.7	242
25	Quantification of Integrated HIV DNA by Repetitive-Sampling Alu-HIV PCR on the Basis of Poisson Statistics. Clinical Chemistry, 2014, 60, 886-895.	1.5	37
26	CD4+ and CD8+ T Cell Activation Are Associated with HIV DNA in Resting CD4+ T Cells. PLoS ONE, 2014, 9, e110731.	1.1	88
27	HIV latency and integration site placement in five cell-based models. Retrovirology, 2013, 10, 90.	0.9	104
28	Quantitation of HIV DNA integration: Effects of differential integration site distributions on Alu-PCR assays. Journal of Virological Methods, 2013, 189, 53-57.	1.0	21
29	HIV 2-long terminal repeat circular DNA is stable in primary CD4+T Cells. Virology, 2013, 441, 18-21.	1.1	30
30	Prospective Antiretroviral Treatment of Asymptomatic, HIV-1 Infected Controllers. PLoS Pathogens, 2013, 9, e1003691.	2.1	94
31	Pegylated Interferon Alfa-2a Monotherapy Results in Suppression of HIV Type 1 Replication and Decreased Cell-Associated HIV DNA Integration. Journal of Infectious Diseases, 2013, 207, 213-222.	1.9	183
32	Comparative Analysis of Measures of Viral Reservoirs in HIV-1 Eradication Studies. PLoS Pathogens, 2013, 9, e1003174.	2.1	524
33	Quantitation of integrated proviral DNA in viral reservoirs. Current Opinion in HIV and AIDS, 2013, 8, 100-105.	1.5	24
34	Gag-Positive Reservoir Cells Are Susceptible to HIV-Specific Cytotoxic T Lymphocyte Mediated Clearance In Vitro and Can Be Detected In Vivo. PLoS ONE, 2013, 8, e71879.	1.1	51
35	Directly Infected Resting CD4+T Cells Can Produce HIV Gag without Spreading Infection in a Model of HIV Latency. PLoS Pathogens, 2012, 8, e1002818.	2.1	126
36	Concurrent measures of total and integrated HIV DNA monitor reservoirs and ongoing replication in eradication trials. Aids, 2012, 26, 2295-2306.	1.0	81

#	Article	lF	CITATIONS
37	Comprehensive analysis of unique cases with extraordinary control over HIV replication. Blood, 2012, 119, 4645-4655.	0.6	86
38	Towards an HIV cure: a global scientific strategy. Nature Reviews Immunology, 2012, 12, 607-614.	10.6	485
39	Patients on HAART often have an excess of unintegrated HIV DNA: Implications for monitoring reservoirs. Virology, 2011, 409, 46-53.	1.1	29
40	HIV reservoirs and latency models. Virology, 2011, 411, 344-354.	1.1	100
41	R5 HIV <i>env</i> and Vesicular Stomatitis Virus G Protein Cooperate To Mediate Fusion to Nail`ve CD4 ⁺ T Cells. Journal of Virology, 2011, 85, 644-648.	1.5	15
42	Elite Suppressors Harbor Low Levels of Integrated HIV DNA and High Levels of 2-LTR Circular HIV DNA Compared to HIV+ Patients On and Off HAART. PLoS Pathogens, 2011, 7, e1001300.	2.1	131
43	Human Immunodeficiency Virus Integrates Directly into Naiľ^ve Resting CD4 ⁺ T Cells but Enters Naiľ^ve Cells Less Efficiently than Memory Cells. Journal of Virology, 2009, 83, 4528-4537.	1.5	86
44	The CXCR4-Tropic Human Immunodeficiency Virus Envelope Promotes More-Efficient Gene Delivery to Resting CD4 ⁺ T Cells than the Vesicular Stomatitis Virus Glycoprotein G Envelope. Journal of Virology, 2009, 83, 8153-8162.	1.5	41
45	Detecting HIV-1 integration by repetitive-sampling Alu-gag PCR. Methods, 2009, 47, 254-260.	1.9	138
46	HIV integration site distributions in resting and activated CD4 + T cells infected in culture. Aids, 2009, 23, 1461-1471.	1.0	129
47	A more precise HIV integration assay designed to detect small differences finds lower levels of integrated DNA in HAART treated patients. Virology, 2008, 379, 78-86.	1.1	73
48	A novel monoclonal antibody against human Argonaute proteins reveals unexpected characteristics of miRNAs in human blood cells. Rna, 2007, 13, 1787-1792.	1.6	107
49	Addition of Deoxynucleosides Enhances Human Immunodeficiency Virus Type 1 Integration and 2LTR Formation in Resting CD4 ⁺ T Cells. Journal of Virology, 2007, 81, 13938-13942.	1.5	52
50	HIV-1 integrates into resting CD4+ T cells even at low inoculums as demonstrated with an improved assay for HIV-1 integration. Virology, 2007, 368, 60-72.	1.1	106
51	Mechanisms of human immunodeficiency virus-1 latency. Transfusion, 2005, 45, 88S-91S.	0.8	4
52	Human Immunodeficiency Virus Type 1 Can Establish Latent Infection in Resting CD4 + T Cells in the Absence of Activating Stimuli. Journal of Virology, 2005, 79, 14179-14188.	1.5	173
53	Long HIV Type 1 Reverse Transcripts Can Accumulate Stably within Resting CD4+T Cells While Short Ones Are Degraded. AIDS Research and Human Retroviruses, 2004, 20, 285-295.	0.5	49
54	A Sensitive, Quantitative Assay for Human Immunodeficiency Virus Type 1 Integration. Journal of Virology, 2002, 76, 10942-10950.	1.5	200

#	Article	IF	CITATIONS
55	cis Expression of DC-SIGN Allows for More Efficient Entry of Human and Simian Immunodeficiency Viruses via CD4 and a Coreceptor. Journal of Virology, 2001, 75, 12028-12038.	1.5	170
56	Human Immunodeficiency Virus Type 1 Spinoculation Enhances Infection through Virus Binding. Journal of Virology, 2000, 74, 10074-10080.	1.5	608
57	The Dendritic Cell-T Cell Milieu of the Lymphoid Tissue of the Tonsil Provides a Locale in Which SIV Can Reside and Propagate at Chronic Stages of Infection. AIDS Research and Human Retroviruses, 1999, 15, 1305-1314.	0.5	38
58	Dendritic cells from skin and blood of macaques both promote SIV replication with T cells from different anatomical sites. Journal of Medical Primatology, 1998, 27, 121-128.	0.3	32
59	Efficient Interaction of HIV-1 with Purified Dendritic Cells via Multiple Chemokine Coreceptors. Journal of Experimental Medicine, 1996, 184, 2433-2438.	4.2	250