Jian-Qiu Huang

List of Publications by Citations

Source: https://exaly.com/author-pdf/10454614/jian-qiu-huang-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

34 2,239 26 35 g-index

35 2,519 12.7 5.1 L-index

#	Paper	IF	Citations
34	Porous graphene oxide/carbon nanotube hybrid films as interlayer for lithium-sulfur batteries. <i>Carbon</i> , 2016 , 99, 624-632	10.4	216
33	Electrospun Carbon Nanofibers with in Situ Encapsulated Co D (Nanoparticles as Electrodes for High-Performance Supercapacitors. <i>ACS Applied Materials & Distributed & Distributed Materials & Distributed & Distributed & Di</i>	9.5	165
32	LithiumBulfur Battery Cable Made from Ultralight, Flexible Graphene/Carbon Nanotube/Sulfur Composite Fibers. <i>Advanced Functional Materials</i> , 2017 , 27, 1604815	15.6	147
31	Novel interlayer made from Fe3C/carbon nanofiber webs for high performance lithiumBulfur batteries. <i>Journal of Power Sources</i> , 2015 , 285, 43-50	8.9	143
30	Cobalt carbonate/ and cobalt oxide/graphene aerogel composite anodes for high performance Li-ion batteries. <i>ACS Applied Materials & Acs Applied & Acs A</i>	9.5	118
29	Revealing Pseudocapacitive Mechanisms of Metal Dichalcogenide SnS2/Graphene-CNT Aerogels for High-Energy Na Hybrid Capacitors. <i>Advanced Energy Materials</i> , 2018 , 8, 1702488	21.8	107
28	Nanostructures of solid electrolyte interphases and their consequences for microsized Sn anodes in sodium ion batteries. <i>Energy and Environmental Science</i> , 2019 , 12, 1550-1557	35.4	103
27	Enhanced conversion reaction kinetics in low crystallinity SnO2/CNT anodes for Na-ion batteries. Journal of Materials Chemistry A, 2016 , 4, 10964-10973	13	102
26	Co3O4/porous electrospun carbon nanofibers as anodes for high performance Li-ion batteries. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 16939-16944	13	102
25	Heterogeneous, mesoporous NiCo2O4MnO2/graphene foam for asymmetric supercapacitors with ultrahigh specific energies. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 3547-3557	13	91
24	Three-Dimensional Porous Graphene Aerogel Cathode with High Sulfur Loading and Embedded TiO Nanoparticles for Advanced Lithium-Sulfur Batteries. <i>ACS Applied Materials & Discrete Samp; Interfaces</i> , 2016 , 8, 28663-28670	9.5	87
23	Rational Assembly of Hollow Microporous Carbon Spheres as P Hosts for Long-Life Sodium-Ion Batteries. <i>Advanced Energy Materials</i> , 2018 , 8, 1702267	21.8	74
22	Novel 2D Sb2S3 Nanosheet/CNT Coupling Layer for Exceptional Polysulfide Recycling Performance. <i>Advanced Energy Materials</i> , 2018 , 8, 1800710	21.8	74
21	Electrospun graphitic carbon nanofibers with in-situ encapsulated CoNi nanoparticles as freestanding electrodes for LiD2 batteries. <i>Carbon</i> , 2016 , 100, 329-336	10.4	72
20	In Situ TEM Study of Volume Expansion in Porous Carbon Nanofiber/Sulfur Cathodes with Exceptional High-Rate Performance. <i>Advanced Energy Materials</i> , 2017 , 7, 1602078	21.8	69
19	Sb-doped SnO2/graphene-CNT aerogels for high performance Li-ion and Na-ion battery anodes. <i>Energy Storage Materials</i> , 2017 , 9, 85-95	19.4	65
18	Carbon-coated mesoporous silicon microsphere anodes with greatly reduced volume expansion. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 6098-6106	13	62

LIST OF PUBLICATIONS

17	Understanding the roles of activated porous carbon nanotubes as sulfur support and separator coating for lithium-sulfur batteries. <i>Electrochimica Acta</i> , 2018 , 268, 1-9	6.7	49
16	Study of lithiation mechanisms of high performance carbon-coated Si anodes by in-situ microscopy. <i>Energy Storage Materials</i> , 2016 , 3, 45-54	19.4	41
15	Electrosprayed multiscale porous carbon microspheres as sulfur hosts for long-life lithium-sulfur batteries. <i>Carbon</i> , 2019 , 141, 16-24	10.4	41
14	Controlled synthesis of cobalt carbonate/graphene composites with excellent supercapacitive performance and pseudocapacitive characteristics. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 17827-178	36°	38
13	In-situ TEM examination and exceptional long-term cyclic stability of ultrafine Fe3O4 nanocrystal/carbon nanofiber composite electrodes. <i>Energy Storage Materials</i> , 2015 , 1, 25-34	19.4	37
12	Nanocavity-engineered Si/multi-functional carbon nanofiber composite anodes with exceptional high-rate capacities. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 17944-17951	13	37
11	Carbon nanofibers containing Si nanoparticles and graphene-covered Ni for high performance anodes in Li ion batteries. <i>RSC Advances</i> , 2014 , 4, 22359-22366	3.7	34
10	A high-performance lithium ion oxygen battery consisting of Li2O2 cathode and lithiated aluminum anode with nafion membrane for reduced O2 crossover. <i>Nano Energy</i> , 2017 , 40, 258-263	17.1	31
9	Preserved Layered Structure Enables Stable Cyclic Performance of MoS2 upon Potassium Insertion. <i>Chemistry of Materials</i> , 2019 , 31, 8801-8809	9.6	27
8	Graphene/RuO2 nanocrystal composites as sulfur host for lithium-sulfur batteries. <i>Journal of Energy Chemistry</i> , 2019 , 35, 204-211	12	21
7	Hybrid Aqueous/Organic Electrolytes Enable the High-Performance Zn-Ion Batteries. <i>Research</i> , 2019 , 2019, 2635310	7.8	21
6	Highly conductive porous graphene/sulfur composite ribbon electrodes for flexible lithium-sulfur batteries. <i>Nanoscale</i> , 2018 , 10, 21132-21141	7.7	20
5	KVPOF as a novel insertion-type anode for potassium ion batteries. <i>Chemical Communications</i> , 2019 , 55, 11311-11314	5.8	18
4	Realizing high-performance Zn-ion batteries by a reduced graphene oxide block layer at room and low temperatures. <i>Journal of Energy Chemistry</i> , 2020 , 43, 1-7	12	14
3	Exploring the structure evolution of MoS upon Li/Na/K ion insertion and the origin of the unusual stability in potassium ion batteries. <i>Nanoscale Horizons</i> , 2020 , 5, 1618-1627	10.8	7
2	Critical roles of microstructure and interphase on the stability of microsized germanium anode. <i>Journal of Power Sources</i> , 2021 , 481, 228916	8.9	4
1	Advances in multi-functional flexible interlayers for LiB batteries and metal-based batteries. Materials Today Communications, 2021, 28, 102566	2.5	2