Lothar Ley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10452110/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High-field magnetotransport studies of surface-conducting diamonds. Physical Review B, 2022, 105, .	3.2	0
2	Correlation between electronic micro-roughness and surface topography in two-dimensional surface conducting hydrogen-terminated diamond. Diamond and Related Materials, 2021, 116, 108377.	3.9	5
3	MoO3 induces p-type surface conductivity by surface transfer doping in diamond. Applied Surface Science, 2020, 509, 144890.	6.1	30
4	Engineering the spin–orbit interaction in surface conducting diamond with a solid-state gate dielectric. Applied Physics Letters, 2020, 116, .	3.3	6
5	Attosecond-fast internal photoemission. Nature Photonics, 2020, 14, 219-222.	31.4	23
6	Strong spin-orbit interaction induced by transition metal oxides at the surface of hydrogen-terminated diamond. Carbon, 2020, 164, 244-250.	10.3	11
7	Universal Work Function of Metal Oxides Exposed to Air. Advanced Materials Interfaces, 2019, 6, 1802058.	3.7	29
8	<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>g</mml:mi></mml:math> -factor and well-width fluctuations as a function of carrier density in the two-dimensional hole accumulation layer of transfer-doped diamond. Physical Review B, 2019, 99, .	3.2	11
9	G-factor and well width variations for the two-dimensional hole gas in surface conducting diamond. Applied Physics Letters, 2018, 112, .	3.3	18
10	Strong and Tunable Spin–Orbit Coupling in a Two-Dimensional Hole Gas in Ionic-Liquid Gated Diamond Devices. Nano Letters, 2016, 16, 3768-3773.	9.1	45
11	Spin–Orbit Interaction in a Two-Dimensional Hole Gas at the Surface of Hydrogenated Diamond. Nano Letters, 2015, 15, 16-20.	9.1	39
12	Formation of a silicon terminated (100) diamond surface. Applied Physics Letters, 2015, 106, .	3.3	28
13	Direct observation of phonon emission from hot electrons: spectral features in diamond secondary electron emission. Journal of Physics Condensed Matter, 2014, 26, 395008.	1.8	4
14	Photoelectron emission from lithiated diamond. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 2209-2222.	1.8	30
15	Energy level alignment at the porphyrin/cobaltocene interface: From transfer doping to cobalt intercalation. Organic Electronics, 2014, 15, 531-536.	2.6	2
16	Doping efficiency and energy-level scheme in C60F48-doped zinc–tetraphenylporphyrin films. Organic Electronics, 2013, 14, 169-174.	2.6	22
17	Calculating the Universal Energy‣evel Alignment of Organic Molecules on Metal Oxides. Advanced Functional Materials, 2013, 23, 794-805.	14.9	79
18	Diamond Surfaces with Air‣table Negative Electron Affinity and Giant Electron Yield Enhancement. Advanced Functional Materials, 2013, 23, 5608-5614.	14.9	58

LOTHAR LEY

#	Article	IF	CITATIONS
19	Preparation of low index single crystal diamond surfaces for surface science studies. Diamond and Related Materials, 2011, 20, 418-427.	3.9	14
20	Characteristics of solution gated field effect transistors on the basis of epitaxial graphene on silicon carbide. Journal Physics D: Applied Physics, 2010, 43, 345303.	2.8	47
21	Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nature Materials, 2009, 8, 203-207.	27.5	2,396
22	Surface Conductivity of Diamond. , 2009, , 69-102.		4
23	Alternative techniques to reduce interface traps in nâ€ŧype 4Hâ€SiC MOS capacitors. Physica Status Solidi (B): Basic Research, 2008, 245, 1378-1389.	1.5	64
24	Effect of an intermediate graphite layer on the electronic properties of metal/SiC contacts. Physica Status Solidi (B): Basic Research, 2008, 245, 1369-1377.	1.5	32
25	Hydrogen-terminated diamond electrodes. II. Redox activity. Physical Review E, 2008, 78, 041603.	2.1	17
26	Hydrogen-terminated diamond electrodes. I. Charges, potentials, and energies. Physical Review E, 2008, 78, 041602.	2.1	24
27	Electronic Structure of Graphite/6H-SiC Interfaces. Materials Science Forum, 2007, 556-557, 701-704.	0.3	15
28	Initial Stages of the Graphite-SiC(0001) Interface Formation Studied by Photoelectron Spectroscopy. Materials Science Forum, 2007, 556-557, 525-528.	0.3	55
29	Surface Conductivity of Diamond: A Novel Doping Mechanism. Advances in Science and Technology, 2006, 48, 93-102.	0.2	1
30	Nucleophilicâ^'Alkylationâ^'Reoxidation:Â A Functionalization Sequence for Single-Wall Carbon Nanotubes. Journal of the American Chemical Society, 2006, 128, 6683-6689.	13.7	156
31	Quantitative determination of oxidative defects on single walled carbon nanotubes. Physica Status Solidi (B): Basic Research, 2006, 243, 3217-3220.	1.5	47
32	Fuctionalization of Single-Walled Carbon Nanotubes with Organo-Lithium Compounds: A Combined XPS, STM, and AFM study. AIP Conference Proceedings, 2005, , .	0.4	1
33	Surface transfer doping of diamond by fullerene. Diamond and Related Materials, 2005, 14, 451-458.	3.9	58
34	Effect of SOCl2 Treatment on Electrical and Mechanical Properties of Single-Wall Carbon Nanotube Networks. Journal of the American Chemical Society, 2005, 127, 5125-5131.	13.7	330
35	[2+1] cycloaddition for cross-linking SWCNTs. Carbon, 2004, 42, 941-947.	10.3	121
36	Hydrothermal functionalisation of single-walled carbon nanotubes. Synthetic Metals, 2004, 142, 263-266.	3.9	40

LOTHAR LEY

#	Article	IF	CITATIONS
37	Electrochemical Surface Transfer Doping. Journal of the Electrochemical Society, 2004, 151, E315.	2.9	71
38	Functionalization of Single-Walled Carbon Nanotubes with (R-)Oxycarbonyl Nitrenes. Journal of the American Chemical Society, 2003, 125, 8566-8580.	13.7	520
39	Modification of Single-Walled Carbon Nanotubes by Hydrothermal Treatment. Chemistry of Materials, 2003, 15, 3314-3319.	6.7	24
40	Doping of single-walled carbon nanotube bundles by BrÃ,nsted acids. Physical Chemistry Chemical Physics, 2003, 5, 5472-5476.	2.8	192
41	Modification of Electrical and Mechanical Properties of Single Wall Carbon Nanotubes by Reaction with SOCl2. Materials Research Society Symposia Proceedings, 2003, 772, 311.	0.1	2
42	Quantitative evaluation of biaxial strain in epitaxial 3C-SiC layers on Si(100) substrates by Raman spectroscopy. Journal of Applied Physics, 2002, 91, 1113-1117.	2.5	77
43	Raman scattering in polycrystalline3Câ^'SiC: Influence of stacking faults. Physical Review B, 1998, 58, 9858-9862.	3.2	114
44	Contactless Measurement of the Thermal Conductivity of Thin SiC Layers. Materials Science Forum, 1998, 264-268, 657-660.	0.3	3
45	Conduction-band states and surface core excitons in InSb(110) and other III-V compounds. Physical Review B, 1994, 50, 7384-7388.	3.2	2
46	Cross-sectional scanning tunneling and scanning force microscopy of amorphous hydrogenated silicon pn-doping superlattices in nitrogen and in air. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1994, 12, 2440.	1.6	2
47	Cross-sectional scanning-tunneling-spectroscopy of a-Si:H pn-doping superlattices. Superlattices and Microstructures, 1994, 16, 271-274.	3.1	0
48	Determination of conduction-band states in GaAs(110), InP(110), and InAs(110). Physical Review B, 1993, 47, 12625-12635.	3.2	9
49	Conduction-band states in GaSb(110) and GaP(110) at the Brillouin-zone center. Physical Review B, 1993, 48, 14301-14308.	3.2	3
50	Near-surface defects in amorphous semiconductors related to hydrogen incorporation. Journal of Non-Crystalline Solids, 1991, 137-138, 327-330.	3.1	0
51	Defects and disorder broadened band tails in compensated hydrogenated amorphous silicon. Journal of Non-Crystalline Solids, 1991, 137-138, 387-390.	3.1	9
52	Individual electronic defect states in a-Si:H/a-SiNx:H double barrier structures. Journal of Non-Crystalline Solids, 1991, 137-138, 1107-1110.	3.1	5
53	Hydrogen-related defects in hydrogenated amorphous semiconductors. Physical Review B, 1991, 44, 1066-1073.	3.2	14
54	Band tails in hydrogenated amorphous silicon and silicon-germanium alloys. Physical Review Letters, 1990, 64, 2811-2814.	7.8	100

LOTHAR LEY

#	Article	IF	CITATIONS
55	Random telegraphic noise in large area a-Si:H/a-Si1â^'xNx:H double barrier structures. Journal of Non-Crystalline Solids, 1989, 114, 696-697.	3.1	22
56	Photoemission and optical properties. Topics in Applied Physics, 1984, , 61-168.	0.8	83
57	Temperature effects on valence bands in semiconducting lead chalcogenides. Solid State Communications, 1979, 32, 353-356.	1.9	11
58	Angle-resolved uv photoemission and electronic band structures of the lead chalcogenides. Physical Review B, 1978, 18, 3847-3871.	3.2	130
59	Valence Band Structure of PbS from Angle-Resolved Photoemission. Physical Review Letters, 1977, 38, 1033-1036.	7.8	55
60	Quasi-Freestanding Graphene on SiC(0001). Materials Science Forum, 0, 645-648, 629-632.	0.3	46