Ira Jacobs

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10451738/publications.pdf

Version: 2024-02-01

		331670	361022
38	1,575	21	35
papers	citations	h-index	g-index
38	38	38	1388
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Dietary Intakes From Ad Libitum Consumption of Canadian Armed Forces Field Rations Compared With Usual Home Dietary Intakes and Military Dietary Reference Intakes. Military Medicine, 2023, 188, e205-e213.	0.8	O
2	The Effects of L-Citrulline on Blood-Lactate Removal Kinetics Following Maximal-Effort Exercise. Journal of Dietary Supplements, 2022, 19, 704-716.	2.6	1
3	Methodological Variations Contributing to Heterogenous Ergogenic Responses to Ischemic Preconditioning. Frontiers in Physiology, 2021, 12, 656980.	2.8	10
4	Energy Balance of Canadian Armed Forces Personnel during an Arctic-Like Field Training Exercise. Nutrients, 2020, 12, 1638.	4.1	12
5	Comparison of dietary intakes of Canadian Armed Forces personnel consuming field rations in acute hot, cold, and temperate conditions with standardized infantry activities. Military Medical Research, 2019, 6, 26.	3.4	13
6	The effects of exercise and ambient temperature on dietary intake, appetite sensation, and appetite regulating hormone concentrations. Nutrition and Metabolism, 2019, 16, 29.	3.0	20
7	Exercise Is Medicine, But Does It Interfere With Medicine?. Exercise and Sport Sciences Reviews, 2017, 45, 127-135.	3.0	18
8	Validation of a Tablet Application for Assessing Dietary Intakes Compared with the Measured Food Intake/Food Waste Method in Military Personnel Consuming Field Rations. Nutrients, 2017, 9, 200.	4.1	29
9	Rate dependent influence of arterial desaturation on self-selected exercise intensity during cycling. PLoS ONE, 2017, 12, e0171119.	2.5	5
10	Clamping end-tidal carbon dioxide during graded exercise with control of inspired oxygen. Respiratory Physiology and Neurobiology, 2016, 231, 28-36.	1.6	4
11	New therapy, new challenges: The effects of long-term continuous flow left ventricular assist device on inflammation. International Journal of Cardiology, 2016, 215, 424-430.	1.7	26
12	Increased cyclic guanosine monophosphate levels and continuous-flow left-ventricular assist devices: Implications for gastrointestinal bleeding. Journal of Thoracic and Cardiovascular Surgery, 2016, 151, 219-227.	0.8	21
13	A pilot study to examine the effects of acute aerobic exercise on transdermally delivered ethinyl estradiol in young women. Evidence Based Women S Health Journal, 2015, 5, 87-92.	0.0	0
14	Longitudinal Assessment of Inflammation in Recipients of Continuous-Flow Left Ventricular Assist Devices. Canadian Journal of Cardiology, 2015, 31, 348-356.	1.7	34
15	Markers of Inflammation in Recipients of Continuous-Flow Left Ventricular Assist Devices. ASAIO Journal, 2014, 60, 657-663.	1.6	33
16	Role of exercise duration on metabolic adaptations in working muscle to short-term moderate-to-heavy aerobic-based cycle training. European Journal of Applied Physiology, 2013, 113, 1965-1978.	2.5	7
17	Adaptations in muscle metabolic regulation require only a small dose of aerobic-based exercise. European Journal of Applied Physiology, 2013, 113, 313-324.	2.5	7
18	Chronotropic incompetence, impaired exercise capacity, and inflammation in recipients of continuous-flow left ventricular assist devices. Journal of Heart and Lung Transplantation, 2013, 32, 930-932.	0.6	13

#	Article	IF	Citations
19	Effects of Acute Modafinil Ingestion on Exercise Time to Exhaustion. Medicine and Science in Sports and Exercise, 2004, 36, 1078-1082.	0.4	42
20	Effects of Ephedrine, Caffeine, and Their Combination on Muscular Endurance. Medicine and Science in Sports and Exercise, 2003, 35, 987-994.	0.4	72
21	Effect of caffeine and ephedrine ingestion on anaerobic exercise performance. Medicine and Science in Sports and Exercise, 2001, 33, 1399-1403.	0.4	131
22	Effects of caffeine, ephedrine and their combination on time to exhaustion during high-intensity exercise. European Journal of Applied Physiology, 1998, 77, 427-433.	2.5	99
23	Creatine Ingestion Increases Anaerobic Capacity and Maximum Accumulated Oxygen Deficit. Applied Physiology, Nutrition, and Metabolism, 1997, 22, 231-243.	1.7	60
24	No Ergogenic Effect of Ginseng Ingestion. International Journal of Sport Nutrition, 1996, 6, 263-271.	1.7	47
25	Variability of Time to Exhaustion During Submaximal Exercise. Applied Physiology, Nutrition, and Metabolism, 1995, 20, 39-51.	1.7	89
26	Effects of prior exercise or ammonium chloride ingestion on muscular strength and endurance. Medicine and Science in Sports and Exercise, 1993, 25, 809-814.	0.4	9
27	Adaptations to training at the individual anaerobic threshold. European Journal of Applied Physiology and Occupational Physiology, 1992, 65, 316-323.	1.2	33
28	Influence of cold exposure on plasma triglyceride clearance in humans. Metabolism: Clinical and Experimental, 1990, 39, 1211-1218.	3.4	29
29	Rates of energy substrates utilization during human cold exposure. European Journal of Applied Physiology and Occupational Physiology, 1989, 58, 873-878.	1.2	72
30	Blood Lactate. Sports Medicine, 1986, 3, 10-25.	6.5	235
31	Muscle glycogen depletion during exercise at 9? C and 21? C. European Journal of Applied Physiology and Occupational Physiology, 1985, 54, 35-39.	1.2	40
32	Blood lactate vs. exhaustive exercise to evaluate aerobic fitness. European Journal of Applied Physiology and Occupational Physiology, 1985, 54, 151-155.	1.2	11
33	Changes in muscle metabolites in females with 30-s exhaustive exercise. Medicine and Science in Sports and Exercise, 1982, 14, 457-460.	0.4	59
34	Changes in onset of blood lactate accumulation (OBLA) and muscle enzymes after training at OBLA. European Journal of Applied Physiology and Occupational Physiology, 1982, 49, 45-57.	1.2	171
35	Lactate in blood, mixed skeletal muscle, and FT or ST fibres during cycle exercise in man. Acta Physiologica Scandinavica, 1982, 114, 461-466.	2.2	46
36	Lactate concentrations after short, maximal exercise at various glycogen levels. Acta Physiologica Scandinavica, 1981, 111, 465-469.	2.2	39

#	Article	IF	CITATIONS
37	Onset of blood lactate accumulation after prolonged exercise. Acta Physiologica Scandinavica, 1981, 112, 215-217.	2.2	28
38	Relevance of Muscle Fibre Type to Fatigue in Short Intense and Prolonged Exercise in Man. Novartis Foundation Symposium, 1981, 82, 59-74.	1.1	10