
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10451347/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The effects of biochar and redox conditions on soil Pb bioaccessibility to people and waterfowl. Chemosphere, 2022, 294, 133675.	4.2	5
2	Effect of organic matter concentration and characteristics on mercury mobilization and methylmercury production at an abandoned mine site. Environmental Pollution, 2021, 271, 116369.	3.7	18
3	Microbial response to designer biochar and compost treatments for mining impacted soils. Biochar, 2021, 3, 299-314.	6.2	7
4	The Occurrence of Legacy P Soils and Potential Mitigation Practices Using Activated Biochar. Agronomy, 2021, 11, 1289.	1.3	4
5	Phytostabilization of acidic mine tailings with biochar, biosolids, lime, and locally-sourced microbial inoculum: Do amendment mixtures influence plant growth, tailing chemistry, and microbial composition?. Applied Soil Ecology, 2021, 165, 103962.	2.1	27
6	Focused Microbiome Shifts in Reconstructed Wetlands Correlated with Elevated Cu Concentrations Originating from Micronized Copper Azole Treated Wood. Environmental Toxicology and Chemistry, 2021, 40, 3351-3368.	2.2	0
7	Microbial Response to Phytostabilization in Mining Impacted Soils Using Maize in Conjunction with Biochar and Compost. Microorganisms, 2021, 9, 2545.	1.6	3
8	Biochar affects growth and shoot nitrogen in four crops for twoÂsoils. , 2020, 3, e20067.		8
9	Biochar Affects Essential Nutrients of Carrot Taproots and Lettuce Leaves. Hortscience: A Publication of the American Society for Hortcultural Science, 2020, 55, 261-271.	0.5	5
10	Phytostabilization of Zn and Cd in Mine Soil Using Corn in Combination with Biochars and Manure-Based Compost. Environments - MDPI, 2019, 6, 69.	1.5	21
11	Effects of season and interval of prescribed burns on pyrogenic carbon in ponderosa pine stands in the southern Blue Mountains, Oregon, USA. Geoderma, 2019, 348, 1-11.	2.3	17
12	Biochar compost blends facilitate switchgrass growth in mine soils by reducing Cd and Zn bioavailability. Biochar, 2019, 1, 97-114.	6.2	74
13	Elemental and Spectroscopic Characterization of Low-Temperature (350°C) Lignocellulosic- and Manure-Based Designer Biochars and Their Use as Soil Amendments. , 2019, , 37-58.		9
14	Biochar for Mine-land Reclamation. , 2019, , 75-90.		7
15	Remediation of an acidic mine spoil: Miscanthus biochar and lime amendment affects metal availability, plant growth, and soil enzyme activity. Chemosphere, 2018, 205, 709-718.	4.2	91
16	Shifts in N and δ15N in wheat and barley exposed to cerium oxide nanoparticles. NanoImpact, 2018, 11, 156-163.	2.4	5
17	Cerium oxide nanoparticles transformation at the root–soil interface of barley (<i>Hordeum) Tj ETQq1 1 0.784</i>	314 rgBT . 2.2	Overlock 10
18	Douglas-Fir (<i>Pseudotsuga menziesii</i> (Mirb.) Franco) Transcriptome Profile Changes Induced by Diesel Emissions Generated with CeO ₂ Nanoparticle Fuel Borne Catalyst. Environmental Science & Technology, 2018, 52, 10067-10077.	4.6	8

#	Article	IF	CITATIONS
19	Applying fingerprint Fourier transformed infrared spectroscopy and chemometrics to assess soil ecosystem disturbance and recovery. Journal of Soils and Water Conservation, 2018, 73, 443-451.	0.8	3
20	A rapid-test for screening biochar effects on seed germination. Communications in Soil Science and Plant Analysis, 2018, 49, 2025-2041.	0.6	14
21	13C isotopic signature and C concentration of soil density fractions illustrate reduced C allocation to subalpine grassland soil under high atmospheric N deposition. Soil Biology and Biochemistry, 2018, 125, 178-184.	4.2	15
22	Concentration and Release of Phosphorus and Potassium From Lignocellulosic- and Manure-Based Biochars for Fertilizer Reuse. Frontiers in Sustainable Food Systems, 2018, 2, .	1.8	31
23	Intergenerational responses of wheat (Triticum aestivum L.) to cerium oxide nanoparticles exposure. Environmental Science: Nano, 2017, 4, 700-711.	2.2	43
24	Can Biochar Covers Reduce Emissions from Manure Lagoons While Capturing Nutrients?. Journal of Environmental Quality, 2017, 46, 659-666.	1.0	19
25	Germination and early plant development of ten plant species exposed to titanium dioxide and cerium oxide nanoparticles. Environmental Toxicology and Chemistry, 2016, 35, 2223-2229.	2.2	121
26	Gasified Grass and Wood Biochars Facilitate Plant Establishment in Acid Mine Soils. Journal of Environmental Quality, 2016, 45, 1013-1020.	1.0	15
27	Biochars impact on water infiltration and water quality through a compacted subsoil layer. Chemosphere, 2016, 142, 160-167.	4.2	67
28	Effects of Biochar Blends on Microbial Community Composition in Two Coastal Plain Soils. Agriculture (Switzerland), 2015, 5, 1060-1075.	1.4	23
29	Designing relevant biochars as soil amendments using lignocellulosic-based and manure-based feedstocks. Journal of Soils and Sediments, 2014, 14, 330-343.	1.5	138
30	Water uptake in biochars: The roles of porosity and hydrophobicity. Biomass and Bioenergy, 2014, 61, 196-205.	2.9	351
31	Preferential interaction of Na+ over K+ with carboxylate-functionalized silver nanoparticles. Science of the Total Environment, 2014, 490, 11-18.	3.9	13
32	Potential for metal contamination by direct sonication of nanoparticle suspensions. Environmental Toxicology and Chemistry, 2013, 32, 889-893.	2.2	32
33	Investigations of nanoparticle toxicity and uptake of Cerium oxide and Titanium dioxide in Arabidopsis thaliana (L.). FASEB Journal, 2012, 26, 580.4.	0.2	0
34	Soil life in reconstructed ecosystems: Initial soil food web responses after rebuilding a forest soil profile for a climate change experiment. Applied Soil Ecology, 2010, 45, 26-38.	2.1	7
35	Dynamic Molecular Structure of Plant Biomass-Derived Black Carbon (Biochar). Environmental Science & Technology, 2010, 44, 1247-1253.	4.6	2,267
36	Seasonal and long-term effects of CO2 and O3 on water loss in ponderosa pine and their interaction with climate and soil moisture. Tree Physiology, 2009, 29, 1381-1393.	1.4	2

#	Article	IF	CITATIONS
37	Elevated CO2 and O3 effects on fine-root survivorship in ponderosa pine mesocosms. Oecologia, 2009, 160, 827-837.	0.9	11
38	Do mesocosms influence photosynthesis and soil respiration?. Environmental and Experimental Botany, 2008, 62, 36-44.	2.0	4
39	Bole water content shows little seasonal variation in century-old Douglas-fir trees. Tree Physiology, 2007, 27, 737-747.	1.4	17
40	Sapwood moisture in Douglas-fir boles and seasonal changes in soil water. Canadian Journal of Forest Research, 2007, 37, 1263-1271.	0.8	9
41	Elevated temperature, soil moisture and seasonality but not CO2 affect canopy assimilation and system respiration in seedling Douglas-fir ecosystems. Agricultural and Forest Meteorology, 2007, 143, 30-48.	1.9	12
42	Relating fine root biomass to soil and climate conditions in the Pacific Northwest. Forest Ecology and Management, 2007, 242, 195-208.	1.4	27
43	13C and15N in microarthropods reveal little response of Douglas-fir ecosystems to climate change. Global Change Biology, 2007, 13, 1386-1397.	4.2	7
44	Elevated CO ₂ and temperature alter net ecosystem C exchange in a young Douglas fir mesocosm experiment. Plant, Cell and Environment, 2007, 30, 1400-1410.	2.8	17
45	Effects of elevated CO2 on fine root dynamics in a Mojave Desert community: a FACE study. Global Change Biology, 2006, 12, 61-73.	4.2	45
46	CO2 and N-fertilization effects on fine-root length, production, and mortality: a 4-year ponderosa pine study. Oecologia, 2006, 148, 517-525.	0.9	25
47	Effects of elevated CO2 and O3 on soil respiration under ponderosa pine. Soil Biology and Biochemistry, 2006, 38, 1764-1778.	4.2	30
48	Ecological and water quality consequences of nutrient addition for salmon restoration in the Pacific Northwest. Frontiers in Ecology and the Environment, 2006, 4, 18-26.	1.9	56
49	Independent and contrasting effects of elevated CO2 and N-fertilization on root architecture in Pinus ponderosa. Trees - Structure and Function, 2005, 19, 43-50.	0.9	10
50	Estimates of Douglas-fir fine root production and mortality from minirhizotrons. Forest Ecology and Management, 2005, 204, 359-370.	1.4	34
51	A spatial analysis of fine-root biomass from stand data in the Pacific Northwest. Canadian Journal of Forest Research, 2004, 34, 2169-2180.	0.8	5
52	Elevated CO2 and temperature alter nitrogen allocation in Douglas-fir. Global Change Biology, 2003, 9, 1038-1050.	4.2	67
53	Optimizing minirhizotron sample frequency for an evergreen and deciduous tree species. New Phytologist, 2003, 157, 155-161.	3.5	20
54	Whole-seedling biomass allocation, leaf area, and tissue chemistry for Douglas-fir exposed to elevated CO2 and temperature for 4 years. Canadian Journal of Forest Research, 2003, 33, 269-278.	0.8	56

#	Article	IF	CITATION
55	Title is missing!. Plant and Soil, 2001, 229, 259-270.	1.8	66
56	Elevated CO2 and conifer roots: effects on growth, life span and turnover. New Phytologist, 2000, 147, 87-103.	3.5	137
57	Minirhizotron installation in sandy, rocky soils with minimal soil disturbance. Soil Science Society of America Journal, 2000, 64, 761-764.	1.2	16
58	Effects of elevated CO2 and N fertilization on fine root dynamics and fungal growth in seedling Pinus ponderosa. Environmental and Experimental Botany, 1997, 37, 73-83.	2.0	55
59	Title is missing!. Plant and Soil, 1997, 190, 19-28.	1.8	40
60	Title is missing!. Plant and Soil, 1997, 189, 275-287.	1.8	59
61	A two-probe method for measuring water content of thin forest floor litter layers using time domain reflectometry. Soil and Tillage Research, 1996, 9, 199-207.	0.4	9
62	A Versatile Sunâ€lit Controlledâ€Environment Facility for Studying Plant and Soil Processes. Journal of Environmental Quality, 1996, 25, 614-625.	1.0	84
63	Effects of elevated CO2 and nitrogen on the synchrony of shoot and root growth in ponderosa pine. Tree Physiology, 1996, 16, 905-914.	1.4	70
64	Effects of elevated CO ₂ and N fertilization on soil respiration from ponderosa pine (<i>Pinusponderosa</i>) in open-top chambers. Canadian Journal of Forest Research, 1995, 25, 1243-1251.	0.8	72
65	Effects of Elevated CO 2 and Nitrogen on Ponderosa Pine Fine Roots and Associated Fungal Components. Journal of Biogeography, 1995, 22, 281.	1.4	37