Stanley D Smith

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10450836/publications.pdf Version: 2024-02-01

STANLEY D SMITH

#	Article	IF	CITATIONS
1	Convergence across biomes to a common rain-use efficiency. Nature, 2004, 429, 651-654.	27.8	968
2	Consequences of More Extreme Precipitation Regimes for Terrestrial Ecosystems. BioScience, 2008, 58, 811-821.	4.9	959
3	Assessing the Response of Terrestrial Ecosystems to Potential Changes in Precipitation. BioScience, 2003, 53, 941.	4.9	680
4	Functional responses of plants to elevated atmospheric CO 2 – do photosynthetic and productivity data from FACE experiments support early predictions?. New Phytologist, 2004, 162, 253-280.	7.3	624
5	Elevated CO2 increases productivity and invasive species success in an arid ecosystem. Nature, 2000, 408, 79-82.	27.8	529
6	Mechanisms Associated With Decline of Woody Species in Riparian Ecosystems of the Southwestern U.S Ecological Monographs, 1995, 65, 347-370.	5.4	364
7	Physiological Ecology of North American Desert Plants. Adaptations of Desert Organisms, 1997, , .	0.3	259
8	Invasive capacity of Tamarix ramosissima in a Mojave Desert floodplain: the role of drought. Oecologia, 1997, 111, 12-18.	2.0	216
9	Soil resource heterogeneity in the Mojave Desert. Journal of Arid Environments, 2002, 52, 269-292.	2.4	186
10	Water relations of riparian plants from warm desert regions. Wetlands, 1998, 18, 687-696.	1.5	165
11	Shifting species interactions in terrestrial dryland ecosystems under altered water availability and climate change. Biological Reviews, 2012, 87, 563-582.	10.4	141
12	Net ecosystem CO2 exchange in Mojave Desert shrublands during the eighth year of exposure to elevated CO2. Global Change Biology, 2005, 11, 749-756.	9.5	124
13	Effects of fire on water and salinity relations of riparian woody taxa. Oecologia, 1993, 94, 186-194.	2.0	110
14	Biotic, abiotic and performance aspects of the Nevada Desert Freeâ€Air CO2Enrichment (FACE) Facility. Global Change Biology, 1999, 5, 659-668.	9.5	103
15	The temperature responses of soil respiration in deserts: a seven desert synthesis. Biogeochemistry, 2011, 103, 71-90.	3.5	101
16	Differential daytime and nightâ€ŧime stomatal behavior in plants from North American deserts. New Phytologist, 2012, 194, 464-476.	7.3	99
17	The effects of parental CO 2 environment on seed quality and subsequent seedling performance in Bromusrubens. Oecologia, 1998, 114, 202-208.	2.0	89
18	Evidence of drought-induced stress on biotic crust moss in the Mojave Desert. Plant, Cell and Environment, 2005, 28, 939-947.	5.7	76

STANLEY D SMITH

#	Article	IF	CITATIONS
19	Photosynthetic responses of Mojave Desert shrubs to free air CO2 enrichment are greatest during wet years. Global Change Biology, 2003, 9, 276-285.	9.5	69
20	No cumulative effect of 10Âyears of elevated [<scp><scp>CO₂</scp></scp>] on perennial plant biomass components in the Mojave Desert. Global Change Biology, 2013, 19, 2168-2181.	9.5	66
21	Increases in Desert Shrub Productivity under Elevated Carbon Dioxide Vary with Water Availability. Ecosystems, 2006, 9, 374-385.	3.4	64
22	ELEVATED ATMOSPHERIC CO2DOES NOT CONSERVE SOIL WATER IN THE MOJAVE DESERT. Ecology, 2004, 85, 93-99.	3.2	59
23	Linking Plant Invasions to Global Environmental Change. , 2007, , 93-102.		57
24	On the relationship between stomatal characters and atmospheric CO2. Geophysical Research Letters, 2003, 30, .	4.0	53
25	CO2ENRICHMENT REDUCES THE ENERGETIC COST OF BIOMASS CONSTRUCTION IN AN INVASIVE DESERT GRASS. Ecology, 2004, 85, 100-106.	3.2	53
26	Identifying Native Vegetation for Reducing Exotic Species during the Restoration of Desert Ecosystems. Restoration Ecology, 2012, 20, 781-787.	2.9	46
27	Longâ€ŧerm response of a Mojave Desert winter annual plant community to a wholeâ€ecosystem atmospheric <scp><scp>CO₂</scp> manipulation (<scp>FACE</scp>). Global Change Biology, 2014, 20, 879-892.</scp>	9.5	34
28	Leaf conductance decreased under free-air CO2 enrichment (FACE) for three perennials in the Nevada desert. New Phytologist, 2001, 150, 449-458.	7.3	29
29	Effects of elevated CO2 (FACE) on the functional ecology of the drought-deciduous Mojave Desert shrub, Lycium andersonii. Environmental and Experimental Botany, 2002, 48, 93-106.	4.2	27
30	Functional ecology of shrub seedlings after a natural recruitment event at the Nevada Desert FACE Facility. Global Change Biology, 2003, 9, 718-728.	9.5	19
31	Annual-perennial plant relationships and species selection for desert restoration. Journal of Arid Land, 2013, 5, 298-309.	2.3	19
32	Dominant plant taxa predict plant productivity responses to CO2 enrichment across precipitation and soil gradients. AoB PLANTS, 2015, 7, .	2.3	18
33	Does a decade of elevated [CO 2] affect a desert perennial plant community?. New Phytologist, 2014, 201, 498-504.	7.3	9
34	Canopy volume–aboveground biomass relationships of desert perennials and the effects of elevated CO2. Ecology, 2013, 94, 2656-2657.	3.2	0