
Mrinalini Puranik

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10450760/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Initial Excited State Dynamics of Lumichrome upon Ultraviolet Excitation. Photochemistry and Photobiology, 2022, , .	2.5	0
2	Assessing Barriers for Antimicrobial Penetration in Complex Asymmetric Bacterial Membranes: A Case Study with Thymol. Langmuir, 2020, 36, 8800-8814.	3.5	29
3	Developing a Coarse-Grained Model for Bacterial Cell Walls: Evaluating Mechanical Properties and Free Energy Barriers. Journal of Chemical Theory and Computation, 2020, 16, 5369-5384.	5.3	31
4	Kinetics of Melanin Polymerization during Enzymatic and Nonenzymatic Oxidation. Journal of Physical Chemistry B, 2018, 122, 2047-2063.	2.6	23
5	Structural basis for substrate discrimination byE.Âcolirepair enzyme, AlkB. RSC Advances, 2018, 8, 1281-1291.	3.6	0
6	Deep ultraviolet initiated excited state dynamics of riboflavin and flavin mononucleotide. Journal of Raman Spectroscopy, 2018, 49, 1628-1644.	2.5	7
7	Initial excited state structural dynamics of lumiflavin upon ultraviolet excitation. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 364, 190-201.	3.9	1
8	Mechanism of Discrimination of 8-Oxoguanosine versus Guanosine by Escherichia coli Fpg. Journal of Physical Chemistry B, 2017, 121, 5679-5687.	2.6	5
9	Ultrafast Nuclear Dynamics of Photoexcited Guanosine-5′-Monophosphate in Three Singlet States. Journal of Physical Chemistry B, 2017, 121, 7095-7107.	2.6	4
10	Ultrafast structural dynamics of photoexcited adenine. Physical Chemistry Chemical Physics, 2017, 19, 20224-20240.	2.8	6
11	Sub-50 fs excited state dynamics of 6-chloroguanine upon deep ultraviolet excitation. Physical Chemistry Chemical Physics, 2016, 18, 13874-13887.	2.8	9
12	Exquisite Modulation of the Active Site of Methanocaldococcus jannaschii Adenylosuccinate Synthetase in Forward Reaction Complexes. Biochemistry, 2016, 55, 2491-2499.	2.5	0
13	Solution structures of purine base analogues 9-deazaguanine and 9-deazahypoxanthine. Journal of Biomolecular Structure and Dynamics, 2016, 34, 640-652.	3.5	1
14	Differential Distortion of Purine Substrates by Human and <i>Plasmodium falciparum</i> Hypoxanthineâ€Guanine Phosphoribosyltransferase to Catalyse the Formation of Mononucleotides. ChemPhysChem, 2015, 16, 2172-2181.	2.1	8
15	Formation of a CHâ^'Ï€ Contact in the Core of Native Barstar during Folding. Journal of Physical Chemistry B, 2015, 119, 2928-2932.	2.6	2
16	Solution structure of ligands involved in purine salvage pathway. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 151, 679-686.	3.9	1
17	Deciphering Differential Distortion of Purine Substrates by Human and Plasmodium falciparum HGPRT. FASEB Journal, 2015, 29, 721.19.	0.5	0
18	Resonance Raman Spectroscopic Measurements Delineate the Structural Changes that Occur during Tau Fibril Formation. Biochemistry, 2014, 53, 6550-6565.	2.5	34

MRINALINI PURANIK

#	Article	IF	CITATIONS
19	Intricate packing in the hydrophobic core of barstar through a CH–π interaction. Journal of Raman Spectroscopy, 2014, 45, 814-821.	2.5	5
20	Solution structures of purine base analogues 6-chloroguanine, 8-azaguanine and allopurinol. Journal of Biomolecular Structure and Dynamics, 2014, 32, 27-35.	3.5	6
21	Mode-Specific Reorganization Energies and Ultrafast Solvation Dynamics of Tryptophan from Raman Line-Shape Analysis. Biophysical Journal, 2013, 105, 211-221.	0.5	11
22	Methylation Stabilizes the Imino Tautomer of dAMP and Amino Tautomer of dCMP in Solution. Journal of Physical Chemistry B, 2011, 115, 6234-6242.	2.6	5
23	Hypoxanthine Guanine Phosphoribosyltransferase Distorts the Purine Ring of Nucleotide Substrates and Perturbs the p <i>K</i> _a of Bound Xanthosine Monophosphate. Biochemistry, 2011, 50, 4184-4193.	2.5	10
24	Vibrational markers of structural distortion in adenine nucleobases upon DNA damage. Physical Chemistry Chemical Physics, 2011, 13, 3851.	2.8	21
25	Purines as Interrogators of Local Environment in Proteins and DNA. , 2010, , .		0
26	Computational prediction of vibrational spectra of normal and modified DNA nucleobases. Journal of Raman Spectroscopy, 2009, 40, 1726-1748.	2.5	30
27	Solution Structure of the DNA Damage Lesion 8-Oxoguanosine from Ultraviolet Resonance Raman Spectroscopy. Journal of Physical Chemistry A, 2009, 113, 1459-1471.	2.5	37
28	Structures, Ionization Equilibria, and Tautomerism of 6-Oxopurines in Solution. Journal of Physical Chemistry B, 2009, 113, 15101-15118.	2.6	27
29	Heme Displacement Mechanism of CooA Activation. Journal of Biological Chemistry, 2006, 281, 29165-29173.	3.4	16
30	Dynamics of Carbon Monoxide Binding to Cystathionine β-Synthase. Journal of Biological Chemistry, 2006, 281, 13433-13438.	3.4	74
31	Dynamics of Carbon Monoxide Binding to CooA. Journal of Biological Chemistry, 2004, 279, 21096-21108.	3.4	62
32	Activation Mechanism of the CO Sensor CooA. Journal of Biological Chemistry, 2003, 278, 35384-35393.	3.4	41
33	Excited State Structure and Dynamics ofp-Benzoquinone and Bromanil from Time-Resolved Resonance Raman Spectra and Simulation. Bulletin of the Chemical Society of Japan, 2002, 75, 1057-1064.	3.2	4
34	Structure of the triplet excited state of bromanil from time-resolved resonance Raman spectra and simulation. Journal of Chemical Physics, 2001, 115, 6106-6114.	3.0	11
35	Time-Resolved Resonance Raman and Density Functional Studies on the Ground State and Short-Lived Intermediates of Tetrabromo-p-benzoquinone. Journal of Physical Chemistry A, 2001, 105, 10562-10569.	2.5	23
36	Structure of the triplet excited state of tetrabromo-p-benzoquinone from time-resolved resonance Raman spectra and ab initio calculations. Chemical Physics Letters, 2001, 337, 224-230.	2.6	10