Eli Zysman-Colman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1045004/publications.pdf

Version: 2024-02-01

205 papers 9,488 citations

50170 46 h-index 48187 88 g-index

278 all docs

278 docs citations

times ranked

278

6783 citing authors

#	Article	IF	CITATIONS
1	Purely Organic Thermally Activated Delayed Fluorescence Materials for Organic Lightâ€Emitting Diodes. Advanced Materials, 2017, 29, 1605444.	11.1	1,490
2	Multiresonant Thermally Activated Delayed Fluorescence Emitters Based on Heteroatomâ€Doped Nanographenes: Recent Advances and Prospects for Organic Lightâ€Emitting Diodes. Advanced Functional Materials, 2020, 30, 1908677.	7.8	385
3	Highly emissive excitons with reduced exchange energy in thermally activated delayed fluorescent molecules. Nature Communications, 2019, 10, 597.	5.8	253
4	Organic thermally activated delayed fluorescence (TADF) compounds used in photocatalysis. Chemical Society Reviews, 2021, 50, 7587-7680.	18.7	205
5	Photoredox catalysts based on earth-abundant metal complexes. Catalysis Science and Technology, 2019, 9, 889-915.	2.1	203
6	Enhanced Luminescent Iridium(III) Complexes Bearing Aryltriazole Cyclometallated Ligands. Inorganic Chemistry, 2011, 50, 11514-11526.	1.9	198
7	A Deep Blue B,N-Doped Heptacene Emitter That Shows Both Thermally Activated Delayed Fluorescence and Delayed Fluorescence by Triplet–Triplet Annihilation. Journal of the American Chemical Society, 2020, 142, 6588-6599.	6.6	189
8	Improving Processability and Efficiency of Resonant TADF Emitters: A Design Strategy. Advanced Optical Materials, 2020, 8, 1901627.	3.6	182
9	Lessons learned in tuning the optoelectronic properties of phosphorescent iridium(<scp>iii</scp>) complexes. Chemical Communications, 2017, 53, 807-826.	2.2	180
10	A Comprehensive Survey of Cationic Iridium(III) Complexes Bearing Nontraditional Ligand Chelation Motifs. European Journal of Inorganic Chemistry, 2013, 2013, 2985-3007.	1.0	164
11	Highâ€Efficiency Deepâ€Blueâ€Emitting Organic Lightâ€Emitting Diodes Based on Iridium(III) Carbene Complexes Advanced Materials, 2018, 30, e1804231.	.11.1	160
12	Role of Substitution on the Photophysical Properties of $5,5\hat{a}\in^2$ -Diaryl- $2,2\hat{a}\in^2$ -bipyridine (bpy*) in [Ir(ppy) _{$2<$sub>(bpy*)]PF_{$6<$sub> Complexes: A Combined Experimental and Theoretical Study. Inorganic Chemistry, 2010, 49, 5625-5641.}}	1.9	155
13	Selfâ€Enhanced Electrochemiluminescence of an Iridium(III) Complex: Mechanistic Insight. Angewandte Chemie - International Edition, 2012, 51, 11079-11082.	7.2	147
14	Turn on of sky-blue thermally activated delayed fluorescence and circularly polarized luminescence (CPL) <i>via</i> increased torsion by a bulky carbazolophane donor. Chemical Science, 2019, 10, 6689-6696.	3.7	135
15	Synthesis, Separation, and Circularly Polarized Luminescence Studies of Enantiomers of Iridium(III) Luminophores. Inorganic Chemistry, 2008, 47, 2039-2048.	1.9	131
16	Bright electrochemiluminescence of iridium(iii) complexes. Chemical Communications, 2012, 48, 3179.	2.2	126
17	Improved Turn-On Times of Light-Emitting Electrochemical Cells. Chemistry of Materials, 2008, 20, 388-396.	3.2	110
18	Light-Emitting Electrochemical Cells and Solution-Processed Organic Light-Emitting Diodes Using Small Molecule Organic Thermally Activated Delayed Fluorescence Emitters. Chemistry of Materials, 2015, 27, 6535-6542.	3.2	110

#	Article	IF	CITATIONS
19	Blueâ€Emissive Cobalt(III) Complexes and Their Use in the Photocatalytic Trifluoromethylation of Polycyclic Aromatic Hydrocarbons. Angewandte Chemie - International Edition, 2018, 57, 8027-8031.	7.2	106
20	(Deep) blue through-space conjugated TADF emitters based on [2.2]paracyclophanes. Chemical Communications, 2018, 54, 9278-9281.	2.2	106
21	Identification of the Key Parameters for Horizontal Transition Dipole Orientation in Fluorescent and TADF Organic Lightâ€Emitting Diodes. Advanced Materials, 2021, 33, e2100677.	11.1	99
22	Luminescent Iridium Complexes Used in Light-Emitting Electrochemical Cells (LEECs). Topics in Current Chemistry, 2016, 374, 36.	3.0	97
23	Intramolecular Borylation via Sequential Bâ^'Mes Bond Cleavage for the Divergent Synthesis of B,N,Bâ€Doped Benzo[4]helicenes. Angewandte Chemie - International Edition, 2020, 59, 3156-3160.	7.2	90
24	Organic Longâ€Persistent Luminescence from a Thermally Activated Delayed Fluorescence Compound. Advanced Materials, 2020, 32, e2003911.	11.1	86
25	Tuning the Emission of Cationic Iridium (III) Complexes Towards the Red Through Methoxy Substitution of the Cyclometalating Ligand. Scientific Reports, 2015, 5, 12325.	1.6	81
26	The design of an extended multiple resonance TADF emitter based on a polycyclic amine/carbonyl system. Materials Chemistry Frontiers, 2020, 4, 2018-2022.	3.2	81
27	Recent developments in enantioselective photocatalysis. Beilstein Journal of Organic Chemistry, 2020, 16, 2363-2441.	1.3	80
28	Synthesis of arylbromides from arenes and <i>N</i> -bromosuccinimide (NBS) in acetonitrile â€" A convenient method for aromatic bromination. Canadian Journal of Chemistry, 2009, 87, 440-447.	0.6	77
29	Visible‣ightâ€Promoted Ironâ€Catalyzed C(sp ²)–C(sp ³) Kumada Crossâ€Coupling Flow. Angewandte Chemie - International Edition, 2019, 58, 13030-13034.	in 7.2	71
30	Structure-switching M ₃ L ₂ Ir(<scp>iii</scp>) coordination cages with photo-isomerising azo-aromatic linkers. Chemical Science, 2018, 9, 8150-8159.	3.7	69
31	Blue light emitting electrochemical cells incorporating triazole-based luminophores. Journal of Materials Chemistry C, 2013, 1, 7440.	2.7	68
32	Mono- and Dinuclear Cationic Iridium(III) Complexes Bearing a 2,5-Dipyridylpyrazine (2,5-dpp) Ligand. Inorganic Chemistry, 2013, 52, 8495-8504.	1.9	67
33	Deep-Blue Oxadiazole-Containing Thermally Activated Delayed Fluorescence Emitters for Organic Light-Emitting Diodes. ACS Applied Materials & Samp; Interfaces, 2018, 10, 33360-33372.	4.0	67
34	Solubilised bright blue-emitting iridium complexes for solution processed OLEDs. Journal of Materials Chemistry C, 2016, 4, 3726-3737.	2.7	65
35	Enhanced Electrochemiluminescence from a Stoichiometric Ruthenium(II)–Iridium(III) Complex Soft Salt. Chemistry - A European Journal, 2015, 21, 7435-7440.	1.7	63
36	Green Phosphorescence and Electroluminescence of Sulfur Pentafluoride-Functionalized Cationic Iridium(III) Complexes. Inorganic Chemistry, 2015, 54, 5907-5914.	1.9	61

#	Article	IF	CITATIONS
37	The promise and pitfalls of photocatalysis for organic synthesis. Chem Catalysis, 2022, 2, 468-476.	2.9	61
38	Fluorine-free blue-green emitters for light-emitting electrochemical cells. Journal of Materials Chemistry C, 2014, 2, 5793-5804.	2.7	60
39	Strongly Blue Luminescent Cationic Iridium(III) Complexes with an Electronâ€Rich Ancillary Ligand: Evaluation of Their Optoelectronic and Electrochemiluminescence Properties. European Journal of Inorganic Chemistry, 2013, 2013, 5329-5343.	1.0	59
40	Use of Pyrimidine and Pyrazine Bridges as a Design Strategy To Improve the Performance of Thermally Activated Delayed Fluorescence Organic Light Emitting Diodes. ACS Applied Materials & Diodes, 11, 45171-45179.	4.0	58
41	Solution-Processable Silicon Phthalocyanines in Electroluminescent and Photovoltaic Devices. ACS Applied Materials & Samp; Interfaces, 2016, 8, 9247-9253.	4.0	56
42	High stability light-emitting electrochemical cells from cationic iridium complexes with bulky 5,5′ substituents. Journal of Materials Chemistry, 2011, 21, 18083.	6.7	55
43	Cationic iridium(iii) complexes bearing a bis(triazole) ancillary ligand. Dalton Transactions, 2013, 42, 8402.	1.6	55
44	Photoactive supramolecular cages incorporating Ru(<scp>ii</scp>) and Ir(<scp>iii</scp>) metal complexes. Chemical Communications, 2019, 55, 139-158.	2.2	55
45	Deep-blue thermally activated delayed fluorescence (TADF) emitters for light-emitting electrochemical cells (LEECs). Journal of Materials Chemistry C, 2017, 5, 1699-1705.	2.7	54
46	A trip in the nonlinear optical properties of iridium complexes. Coordination Chemistry Reviews, 2020, 414, 213293.	9.5	51
47	Diindolocarbazole – achieving multiresonant thermally activated delayed fluorescence without the need for acceptor units. Materials Horizons, 2022, 9, 1068-1080.	6.4	48
48	Exact Solution of Kinetic Analysis for Thermally Activated Delayed Fluorescence Materials. Journal of Physical Chemistry A, 2021, 125, 8074-8089.	1.1	47
49	Excited-State Modulation in Donor-Substituted Multiresonant Thermally Activated Delayed Fluorescence Emitters. ACS Applied Materials & Samp; Interfaces, 2022, 14, 22341-22352.	4.0	47
50	Enhancing the photoluminescence quantum yields of blue-emitting cationic iridium(<scp>iii</scp>) complexes bearing bisphosphine ligands. Inorganic Chemistry Frontiers, 2016, 3, 218-235.	3.0	45
51	What Controls the Orientation of TADF Emitters?. Frontiers in Chemistry, 2020, 8, 750.	1.8	45
52	Chiral Iridium(III) Complexes in Light-Emitting Electrochemical Cells: Exploring the Impact of Stereochemistry on the Photophysical Properties and Device Performances. ACS Applied Materials & Amp; Interfaces, 2016, 8, 33907-33915.	4.0	44
53	Supramolecular iridium(III) assemblies. Coordination Chemistry Reviews, 2018, 364, 86-117.	9.5	44
54	Synthesis, Properties, and Light-Emitting Electrochemical Cell (LEEC) Device Fabrication of Cationic Ir(III) Complexes Bearing Electron-Withdrawing Groups on the Cyclometallating Ligands. Inorganic Chemistry, 2016, 55, 10361-10376.	1.9	43

#	Article	IF	CITATIONS
55	Homochiral Emissive Î× ₈ ―and Δ ₈ â€[Ir ₈ Pd ₄] ^{16+Supramolecular Cages. Chemistry - A European Journal, 2017, 23, 14358-14366.}	^{>} 1.7	43
56	Panchromic Cationic Iridium(III) Complexes. Inorganic Chemistry, 2012, 51, 12560-12564.	1.9	40
57	A rare case of dual emission in a neutral heteroleptic iridium(iii) complex. Dalton Transactions, 2013, 42, 8838.	1.6	40
58	Synthesis, UV–Vis and CV properties of a structurally related series of bis(Arylimino)acenaphthenes (Arâ€BIANs). Journal of Physical Organic Chemistry, 2013, 26, 274-279.	0.9	40
59	Blue-to-Green Emitting Neutral Ir(III) Complexes Bearing Pentafluorosulfanyl Groups: A Combined Experimental and Theoretical Study. Inorganic Chemistry, 2017, 56, 7533-7544.	1.9	40
60	Synthesis of a D3-symmetric "trefoil―knotted cyclophane. Chemical Communications, 2011, 47, 9588.	2.2	39
61	Cationic iridium(<scp>iii</scp>) complexes bearing ancillary 2,5-dipyridyl(pyrazine) (2,5-dpp) and 2,2′:5′,2′.terpyridine (2,5-tpy) ligands: synthesis, optoelectronic characterization and light-emitting electrochemical cells. Dalton Transactions, 2014, 43, 13672-13682.	1.6	39
62	Formylated chloro-bridged iridium(<scp>iii</scp>) dimers as OLED materials: opening up new possibilities. Dalton Transactions, 2015, 44, 8419-8432.	1.6	39
63	Palladium(0) NHC complexes: a new avenue to highly efficient phosphorescence. Chemical Science, 2015, 6, 3248-3261.	3.7	39
64	Homochiral Selfâ€Sorted and Emissive Ir ^{III} Metalloâ€Cryptophanes. Chemistry - A European Journal, 2017, 23, 6290-6294.	1.7	39
65	Blue-emitting cationic iridium(iii) complexes featuring pyridylpyrimidine ligands and their use in sky-blue electroluminescent devices. Journal of Materials Chemistry C, 2017, 5, 9638-9650.	2.7	39
66	Enhanced thermally activated delayed fluorescence through bridge modification in sulfone-based emitters employed in deep blue organic light-emitting diodes. Journal of Materials Chemistry C, 2019, 7, 6664-6671.	2.7	39
67	Investigation of Intramolecular Through-Space Charge-Transfer States in Donor–Acceptor Charge-Transfer Systems. Journal of Physical Chemistry Letters, 2021, 12, 2820-2830.	2.1	36
68	The synthesis of brominated-boron-doped PAHs by alkyne 1,1-bromoboration: mechanistic and functionalisation studies. Chemical Science, 2020, 11, 3258-3267.	3.7	35
69	Correlating electronic structures to electrochemiluminescence of cationic Ir complexes. RSC Advances, 2013, 3, 19961.	1.7	33
70	Blueâ€Emissive Cobalt(III) Complexes and Their Use in the Photocatalytic Trifluoromethylation of Polycyclic Aromatic Hydrocarbons. Angewandte Chemie, 2018, 130, 8159-8163.	1.6	33
71	Using the Mechanical Bond to Tune the Performance of a Thermally Activated Delayed Fluorescence Emitter**. Angewandte Chemie - International Edition, 2021, 60, 12066-12073.	7.2	32
72	Modeling of Multiresonant Thermally Activated Delayed Fluorescence Emitters─Properly Accounting for Electron Correlation Is Key!. Journal of Chemical Theory and Computation, 2022, 18, 4903-4918.	2.3	32

#	Article	IF	Citations
73	Influence of Sulfur Oxidation State and Substituents on Sulfur-Bridged Luminescent Copper(I) Complexes Showing Thermally Activated Delayed Fluorescence. Inorganic Chemistry, 2019, 58, 7156-7168.	1.9	31
74	Efficient Skyâ€Blue Organic Lightâ€Emitting Diodes Using a Highly Horizontally Oriented Thermally Activated Delayed Fluorescence Emitter. Advanced Optical Materials, 2020, 8, 2001354.	3.6	31
75	Copper-catalyzed asymmetric sp ³ C–H arylation of tetrahydroisoquinoline mediated by a visible light photoredox catalyst. Beilstein Journal of Organic Chemistry, 2016, 12, 2636-2643.	1.3	30
76	Simple design to achieve red-to-near-infrared emissive cationic lr(<scp>iii</scp>) emitters and their use in light emitting electrochemical cells. RSC Advances, 2017, 7, 31833-31837.	1.7	30
77	Divergente Synthese von B,N,Bâ€Benzo[4]helicenen durch intramolekulare Borylierung unter sequenzieller Bâ€Mesâ€Bindungsspaltung. Angewandte Chemie, 2020, 132, 3181-3185.	1.6	30
78	Thermally Activated Delayed Fluorescence Emitters with Intramolecular Proton Transfer for High Luminance Solution-Processed Organic Light-Emitting Diodes. ACS Applied Materials & Samp; Interfaces, 2021, 13, 15459-15474.	4.0	30
79	Multi-resonant thermally activated delayed fluorescence emitters based on tetracoordinate boron-containing PAHs: colour tuning based on the nature of chelates. Chemical Science, 2022, 13, 1665-1674.	3.7	30
80	Thermally Activated Delayed Fluorescent Dendrimers that Underpin Highâ€Efficiency Hostâ€Free Solutionâ€Processed Organic Lightâ€Emitting Diodes. Advanced Materials, 2022, 34, e2110344.	11.1	30
81	Photoinduced Energy and Electron Transfer Between a Photoactive Cage Based on a Thermally Activate Delayed Fluorescence Ligand and Encapsulated Fluorescent Dyes. ACS Applied Energy Materials, 2018, 1, 2971-2978.	2.5	29
82	Wide-Bite-Angle Diphosphine Ligands in Thermally Activated Delayed Fluorescent Copper(I) Complexes: Impact on the Performance of Electroluminescence Applications. Inorganic Chemistry, 2021, 60, 10323-10339.	1.9	28
83	Conformations of large macrocycles and ring-in-ring complexes. Organic Chemistry Frontiers, 2016, 3, 661-666.	2.3	27
84	Efficient Light-Emitting Electrochemical Cells Using Small Molecular Weight, Ionic, Host-Guest Systems. ECS Journal of Solid State Science and Technology, 2016, 5, R3160-R3163.	0.9	27
85	Exciton efficiency beyond the spin statistical limit in organic light emitting diodes based on anthracene derivatives. Journal of Materials Chemistry C, 2020, 8, 3773-3783.	2.7	27
86	Rigid biimidazole ancillary ligands as an avenue to bright deep blue cationic iridium(<scp>iii</scp>) complexes. Faraday Discussions, 2014, 174, 165-182.	1.6	26
87	Tuning the Optical Properties of Silicon Quantum Dots via Surface Functionalization with Conjugated Aromatic Fluorophores. Scientific Reports, 2018, 8, 3050.	1.6	26
88	Luminescent Dinuclear Copper(I) Complexes Bearing an Imidazolylpyrimidine Bridging Ligand. Inorganic Chemistry, 2020, 59, 14772-14784.	1.9	26
89	Optimization of the Synthesis of Symmetric Aromatic Tri- and Tetrasulfides. Journal of Organic Chemistry, 2003, 68, 2487-2489.	1.7	25
90	Crossover Point between Dialkoxy Disulfides (ROSSOR) and Thionosulfites ((RO)2SS):Â Prediction, Synthesis, and Structure. Journal of the American Chemical Society, 2006, 128, 291-304.	6.6	25

#	Article	IF	CITATIONS
91	Thermally Activated and Aggregationâ€Regulated Excitonic Coupling Enable Emissive High‣ying Triplet Excitons**. Angewandte Chemie - International Edition, 2022, 61, .	7.2	25
92	Blue-green emissive cationic iridium(<scp>iii</scp>) complexes using partially saturated strongly-donating guanidyl-pyridine/-pyrazine ancillary ligands. Chemical Communications, 2015, 51, 14060-14063.	2.2	24
93	Cationic Platinum(II) Complexes Bearing Aryl-BIAN Ligands: Synthesis and Structural and Optoelectronic Characterization. Organometallics, 2015, 34, 13-22.	1.1	23
94	Exploring the self-assembly and energy transfer of dynamic supramolecular iridium-porphyrin systems. Dalton Transactions, 2016, 45, 17195-17205.	1.6	23
95	Controlling the emission efficiency of blue-green iridium(iii) phosphorescent emitters and applications in solution-processed organic light-emitting diodes. Journal of Materials Chemistry C, 2016, 4, 8939-8946.	2.7	23
96	Visible and Near-Infrared Emission from Lanthanoid \hat{l}^2 -Triketonate Assemblies Incorporating Cesium Cations. Inorganic Chemistry, 2017, 56, 8975-8985.	1.9	23
97	An S-shaped double helicene showing both multi-resonance thermally activated delayed fluorescence and circularly polarized luminescence. Journal of Materials Chemistry C, 2022, 10, 4861-4870.	2.7	23
98	Intimate electronic coupling in cationic homodimeric iridium(iii) complexes. Dalton Transactions, 2012, 41, 9382.	1.6	22
99	Unexpected evolution of optical properties in Ir–Pt complexes upon repeat unit increase: towards an understanding of the photophysical behaviour of organometallic polymers. Chemical Communications, 2012, 48, 6271.	2.2	22
100	Exploring energy transfer in luminescent heterometallic ruthenium–iridium ion pairs. Dalton Transactions, 2014, 43, 3676.	1.6	22
101	Generalized Synthesis and Physical Properties of Dialkoxy Disulfides. Journal of Organic Chemistry, 2005, 70, 5964-5973.	1.7	21
102	Photonics of a Conjugated Organometallic Pt–Ir Polymer and Its Model Compounds Exhibiting Hybrid CT Excited States. Macromolecular Rapid Communications, 2012, 33, 522-527.	2.0	21
103	Phosphorescent cationic iridium(<scp>iii</scp>) complexes dynamically bound to cyclodextrin vesicles: applications in live cell imaging. Chemical Science, 2018, 9, 7822-7828.	3.7	21
104	1,3,4-Oxadiazole-based Deep Blue Thermally Activated Delayed Fluorescence Emitters for Organic Light Emitting Diodes. Journal of Physical Chemistry C, 2019, 123, 24772-24785.	1.5	21
105	Ligand electronic fine-tuning and its repercussion on the photocatalytic activity and mechanistic pathways of the copper-photocatalysed aza-Henry reaction. Catalysis Science and Technology, 2020, 10, 7745-7756.	2.1	21
106	Comparison of the structural properties of compounds containing the XSSX moiety (X = H, Me, R, Cl, B	r,) ŢjÆTQd	₁ 0 <u>9</u> 0 rgBT /C
107	Fraternal twin iridium hemicage chelates. Dalton Transactions, 2011, 40, 11726.	1.6	20
108	The Effect of Aryl Substitution on the Properties of a Series of Highly Absorptive Cationic Iridium(III) Complexes Bearing Ancillary Bis(arylimino)acenaphthene Ligands. European Journal of Inorganic Chemistry, 2013, 2013, 4421-4429.	1.0	20

#	Article	IF	CITATIONS
109	Energy transfer between Eu ³⁺ and Nd ³⁺ in near-infrared emitting \hat{I}^2 -triketonate coordination polymers. Dalton Transactions, 2018, 47, 12345-12352.	1.6	20
110	Photoluminescence and electrochemiluminescence of thermally activated delayed fluorescence (TADF) emitters containing diphenylphosphine chalcogenide-substituted carbazole donors. Journal of Materials Chemistry C, 2022, 10, 4646-4667.	2.7	20
111	An investigation on the second-order nonlinear optical response of cationic bipyridine or phenanthroline iridium(<scp>iii</scp>) complexes bearing cyclometallated 2-phenylpyridines with a triphenylamine substituent. Dalton Transactions, 2018, 47, 8292-8300.	1.6	19
112	A luminescent [Pd $<$ sub $>$ 4 $<$ /sub $>$ Ru $<$ sub $>$ 8 $<$ /sub $>$] $<$ sup $>$ 24+ $<$ /sup $>$ supramolecular cage. Chemical Communications, 2018, 54, 6016-6019.	2.2	19
113	Conjugated, rigidified bibenzimidazole ancillary ligands for enhanced photoluminescence quantum yields of orange/red-emitting iridium(<scp>iii</scp>) complexes. Dalton Transactions, 2019, 48, 9639-9653.	1.6	19
114	Regiochemistry of Donor Dendrons Controls the Performance of Thermally Activated Delayed Fluorescence Dendrimer Emitters for High Efficiency Solutionâ€Processed Organic Lightâ€Emitting Diodes. Advanced Science, 2022, 9, e2201470.	5 . 6	19
115	An Unprecedented Family of Luminescent Iridium(III) Complexes Bearing a Six-Membered Chelated Tridentate C^N^C Ligand. Inorganic Chemistry, 2017, 56, 5182-5188.	1.9	18
116	Impact of the use of sterically congested Ir(<scp>iii</scp>) complexes on the performance of light-emitting electrochemical cells. Journal of Materials Chemistry C, 2018, 6, 6385-6397.	2.7	18
117	Analyzing the Relation between Structure and Aggregation Induced Emission (AIE) Properties of Iridium(III) Complexes through Modification of Nonâ€Chromophoric Ancillary Ligands. European Journal of Inorganic Chemistry, 2019, 2019, 152-163.	1.0	18
118	Bipyridineâ€Containing Host Materials for High Performance Yellow Thermally Activated Delayed Fluorescenceâ€Based Organic Light Emitting Diodes with Very Low Efficiency Rollâ€Off. Advanced Optical Materials, 2020, 8, 1901283.	3.6	18
119	Synthesis of New Cyclic Thionosulfites. Journal of Organic Chemistry, 2003, 68, 7059-7062.	1.7	17
120	Hybrid charged heterometallic Pt–Ir complexes: tailoring excited states by taking the best of both worlds. Chemical Communications, 2012, 48, 1120-1122.	2.2	17
121	Near-Infrared Fluorescence of Silicon Phthalocyanine Carboxylate Esters. Scientific Reports, 2017, 7, 12282.	1.6	17
122	Planar and Rigid Pyrazineâ€Based TADF Emitter for Deep Blue Bright Organic Lightâ€Emitting Diodes. European Journal of Organic Chemistry, 2021, 2021, 2285-2293.	1.2	17
123	Phosphorescent platinum(ii) complexes bearing pentafluorosulfanyl substituted cyclometalating ligands. RSC Advances, 2017, 7, 25566-25574.	1.7	16
124	Moving Beyond Cyanoarene Thermally Activated Delayed Fluorescence Compounds as Photocatalysts: An Assessment of the Performance of a Pyrimidyl Sulfone Photocatalyst in Comparison to 4CzIPN. Journal of Organic Chemistry, 2023, 88, 6364-6373.	1.7	16
125	Inorganic and organometallic hemicage podates and cage cryptates incorporating a benzene platform. Coordination Chemistry Reviews, 2012, 256, 1742-1761.	9.5	15
126	Molecular Design Strategy for a Two-Component Gel Based on a Thermally Activated Delayed Fluorescence Emitter. ACS Applied Energy Materials, 2018, 1, 649-654.	2.5	15

#	Article	IF	Citations
127	Stable 6H Organic–Inorganic Hybrid Lead Perovskite and Competitive Formation of 6H and 3C Perovskite Structure with Mixed A Cations. ACS Applied Energy Materials, 2019, 2, 5427-5437.	2.5	15
128	Molecular designs offer fast exciton conversion. Nature Photonics, 2020, 14, 593-594.	15.6	15
129	Spiro-Based Thermally Activated Delayed Fluorescence Emitters with Reduced Nonradiative Decay for High-Quantum-Efficiency, Low-Roll-Off, Organic Light-Emitting Diodes. ACS Applied Materials & Samp; Interfaces, 2021, 13, 44628-44640.	4.0	15
130	Bay-Region Functionalisation of Ar-BIAN Ligands and Their Use Within Highly Absorptive Cationic Iridium(III) Dyes. Scientific Reports, 2017, 7, 15520.	1.6	14
131	A panchromatic, near infrared Ir(III) emitter bearing a tripodal C^N^C ligand as a dye for dye-sensitized solar cells. Polyhedron, 2018, 140, 109-115.	1.0	14
132	Influencing the Optoelectronic Properties of a Heteroleptic Iridium Complex by Second-Sphere H-Bonding Interactions. Inorganic Chemistry, 2018, 57, 8581-8587.	1.9	14
133	Probing the effect of \hat{I}^2 -triketonates in visible and NIR emitting lanthanoid complexes. Dalton Transactions, 2018, 47, 7956-7964.	1.6	12
134	A Pd ₃ L ₆ supramolecular cage incorporating photoactive [2.2]paracyclophane units. Inorganic Chemistry Frontiers, 2020, 7, 232-238.	3.0	12
135	Progressive Polytypism and Bandgap Tuning in Azetidinium Lead Halide Perovskites. Inorganic Chemistry, 2021, 60, 12247-12254.	1.9	12
136	Determining absolute electrochemiluminescence efficiencies of two iridium complexes. Journal of Electroanalytical Chemistry, 2022, 906, 115891.	1.9	12
137	Unprecedented Strong Panchromic Absorption from Protonâ€Switchable Iridium(III) Azoimidazolate Complexes. Chemistry - A European Journal, 2015, 21, 19128-19135.	1.7	11
138	Strategic Modulation of the Photonic Properties of Conjugated Organometallic Pt–Ir Polymers Exhibiting Hybrid CTâ€Excited States. Macromolecular Rapid Communications, 2015, 36, 627-632.	2.0	11
139	Multimetallic and Mixed Environment Iridium(III) Complexes: A Modular Approach to Luminescence Tuning Using a Host Platform. Chemistry - A European Journal, 2017, 23, 8839-8849.	1.7	11
140	Tris(triazolo)triazine-based emitters for solution-processed blue thermally activated delayed fluorescence organic light-emitting diodes. Materials Advances, 2020, 1, 2862-2871.	2.6	11
141	Fascinating organosulfur functionalities: Polychalcogens as diatomic sulfur sources. Heteroatom Chemistry, 2007, 18, 449-459.	0.4	10
142	Monitoring the on–off switching of the electronic communication in diethynylplatinum(ii)-bridged dyads using triplet energy transfer. Chemical Communications, 2013, 49, 5544.	2.2	10
143	Oneâ€Pot Synthesis of Highly Emissive Dipyridinium Dihydrohelicenes. Chemistry - A European Journal, 2015, 21, 7035-7038.	1.7	10
144	Phosphorescent cationic iridium(iii) complexes bearing a nonconjugated six-membered chelating ancillary ligand: a strategy for tuning the emission towards the blue. Dalton Transactions, 2018, 47, 10569-10577.	1.6	10

#	Article	IF	CITATIONS
145	Pyridine-functionalized carbazole donor and benzophenone acceptor design for thermally activated delayed fluorescence emitters in blue organic light-emitting diodes. Journal of Photonics for Energy, 2018, 8, 1.	0.8	10
146	Synthesis and characterisation of first row transition metal complexes of functionalized 1,2,4-benzothiadiazines. Dalton Transactions, 2014, 43, 12996.	1.6	9
147	Visibleâ€Lightâ€Promoted Ironâ€Catalyzed C(sp 2)–C(sp 3) Kumada Crossâ€Coupling in Flow. Angewandte Chemie, 2019, 131, 13164-13168.	1.6	9
148	Mild Câ^'F Activation in Perfluorinated Arenes through Photosensitized Insertion of Isonitriles at 350 nm. Advanced Synthesis and Catalysis, 2020, 362, 376-383.	2.1	9
149	Highly Fluorescent Emitters Based on Triphenylamineâ€Ï€â€Triazine (Dâ€Ï€â€A) System: Effect of Extended Conjugation on Singletâ€Triplet Energy Gap. Asian Journal of Organic Chemistry, 2020, 9, 1277-1285.	1.3	9
150	One-Pot Click Synthesis of 1N-Alkyl-4-aryl-1,2,3-triazoles from Protected Arylalkynes and Alkyl Bromides. Synthesis, 2011, 2011, 3604-3611.	1.2	8
151	Triazole-directed hydrogen-bonded structures of cationic iridium(<scp>iii</scp>) complexes. CrystEngComm, 2014, 16, 8531.	1.3	8
152	Photoinduced electron transfer in supramolecular ruthenium–porphyrin assemblies. Dalton Transactions, 2017, 46, 2255-2262.	1.6	8
153	Synthesis, Characterization, and Optoelectronic Properties of Iridium Complexes Bearing Nonconjugated Six-Membered Chelating Ligands. Inorganic Chemistry, 2018, 57, 2023-2034.	1.9	8
154	Photophysical investigation of near infrared emitting lanthanoid complexes incorporating tris(2-naphthoyl)methane as a new antenna ligand. Dalton Transactions, 2019, 48, 3768-3776.	1.6	8
155	Method for accurate experimental determination of singlet and triplet exciton diffusion between thermally activated delayed fluorescence molecules. Chemical Science, 2021, 12, 1121-1125.	3.7	8
156	Probing the chemistry of rare sulfur allotropes: S ₉ , S ₁₂ and S ₂₀ . Journal of Sulfur Chemistry, 2008, 29, 309-326.	1.0	7
157	Synthesis and characterization of green-to-yellow emissive Ir(III) complexes of pyridylbenzothiadiazine ligand. Journal of Coordination Chemistry, 2016, 69, 1924-1937.	0.8	7
158	Editorial: Recent Advances in Thermally Activated Delayed Fluorescence Materials. Frontiers in Chemistry, 2020, 8, 625910.	1.8	7
159	Fast Delayed Emission in New Pyridazine-Based Compounds. Frontiers in Chemistry, 2020, 8, 572862.	1.8	7
160	Ultrathin non-doped thermally activated delayed fluorescence emitting layer for highly efficient OLEDs. Chemical Communications, 2021, 57, 13728-13731.	2.2	7
161	Fluorinated dibenzo[<i>a</i> , <i>c</i>]-phenazine-based green to red thermally activated delayed fluorescent OLED emitters. Journal of Materials Chemistry C, 2022, 10, 4757-4766.	2.7	7
162	Enhancing Thermally Activated Delayed Fluorescence by Fine-Tuning the Dendron Donor Strength. Journal of Physical Chemistry B, 2022, 126, 552-562.	1,2	7

#	Article	IF	CITATIONS
163	Thermally Activated Delayed Fluorescence Emitters in Light-Emitting Electrochemical Cells. , 2017, , 237-266.		6
164	A Luminescent 1D Silver Polymer Containing [2.2]Paracyclophane Ligands. Frontiers in Chemistry, 2021, 9, 728845.	1.8	6
165	Substitution Effects on a New Pyridylbenzimidazole Acceptor for Thermally Activated Delayed Fluorescence and Their Use in Organic Lightâ€Emitting Diodes. Advanced Optical Materials, 2021, 9, 2100846.	3.6	6
166	Physical and photophysical properties of a linear copper(I) complex of a bulky acenapthene-based NHC ligand. Journal of Coordination Chemistry, 2021, 74, 361-379.	0.8	6
167	Lanthanoid complexes supported by retro-Claisen condensation products of \hat{l}^2 -triketonates. Dalton Transactions, 2018, 47, 17469-17478.	1.6	5
168	Recent advances in materials for organic light emitting diodes. Beilstein Journal of Organic Chemistry, 2018, 14, 1944-1945.	1.3	5
169	Electron-withdrawing group modified carbazolophane donors for deep blue thermally activated delayed fluorescence OLEDs. Materials Advances, 2021, 2, 6684-6693.	2.6	5
170	Compositional Variation in Hybrid Organic–Inorganic Lead Halide Perovskites: Kinetically versus Thermodynamically Controlled Synthesis. Chemistry of Materials, 2021, 33, 3650-3659.	3.2	5
171	Multichromophore Molecular Design for Thermally Activated Delayed-Fluorescence Emitters with Near-Unity Photoluminescence Quantum Yields. Journal of Organic Chemistry, 2021, 86, 11531-11544.	1.7	5
172	Molecular Design and Synthesis of Dicarbazolophane-Based Centrosymmetric Through-Space Donors for Solution-Processed Thermally Activated Delayed Fluorescence OLEDs. Organic Letters, 2021, 23, 6697-6702.	2.4	5
173	High performance non-doped green organic light emitting diodes <i>via</i> delayed fluorescence. Journal of Materials Chemistry C, 2021, 9, 15583-15590.	2.7	5
174	Circularly polarized-thermally activated delayed fluorescent materials based on chiral bicarbazole donors. Chemical Communications, 2022, 58, 6554-6557.	2.2	5
175	Thermally Activated and Aggregationâ€Regulated Excitonic Coupling Enable Emissive Highâ€Lying Triplet Excitons**. Angewandte Chemie, 2022, 134, .	1.6	5
176	Dialkoxy disulfides and their branch-bonded thionosulfite isomers. Journal of Sulfur Chemistry, 2004, 25, 155-182.	1.0	4
177	Desulfurization of aromatic polysulfides with triphenylphosphine. Journal of Sulfur Chemistry, 2004, 25, 101-109.	1.0	4
178	Influence of molecular structure on phase transitions in liquid crystal binary mixtures: The role of the orientation of the central ester. Journal of Molecular Liquids, 2013, 183, 59-63.	2.3	4
179	Molecular electronics: general discussion. Faraday Discussions, 2014, 174, 125-151.	1.6	4
180	High-triplet-energy Bipolar Host Materials Based on Phosphine Oxide Derivatives for Efficient Sky-blue Thermally Activated Delayed Fluorescence Organic Light-emitting Diodes with Reduced Roll-off. Chemistry Letters, 2019, 48, 1225-1228.	0.7	4

#	Article	IF	CITATIONS
181	Using the Mechanical Bond to Tune the Performance of a Thermally Activated Delayed Fluorescence Emitter**. Angewandte Chemie, 2021, 133, 12173-12180.	1.6	4
182	Supramolecular Assemblies Showing Thermally Activated Delayed Fluorescence. Small Science, 0, , 2100022.	5.8	4
183	Luminescent materials for solid-state lighting. Dalton Transactions, 2015, 44, 8317-8317.	1.6	3
184	Organic photovoltaics and energy: general discussion. Faraday Discussions, 2014, 174, 341-355.	1.6	2
185	Marigold Flowerâ€Like Assemblies of Phosphorescent Iridium–Silver Coordination Polymers. Macromolecular Rapid Communications, 2018, 39, e1800501.	2.0	2
186	OBO-Fused Benzo[fg]tetracene as Acceptor With Potential for Thermally Activated Delayed Fluorescence Emitters. Frontiers in Chemistry, 2020, 8, 563411.	1.8	2
187	Exploring the possibility of using fluorine-involved non-conjugated electron-withdrawing groups for thermally activated delayed fluorescence emitters by TD-DFT calculation. Beilstein Journal of Organic Chemistry, 2021, 17, 210-223.	1.3	2
188	Special Section Guest Editorial: Thermally Activated Delayed Fluorescence Organic Light-Emitting Diodes. Journal of Photonics for Energy, 2018, 8, 1.	0.8	2
189	Insights into the electrochemiluminescence process of a hydrogen bonding iridium(III) complex. Journal of Electroanalytical Chemistry, 2022, 920, 116594.	1.9	2
190	50â€1: <i>Invited Paper</i> : Recent Advances in Measuring and Understanding the Influence of Molecular Alignment on the Light Extraction Efficiency of OLEDs. Digest of Technical Papers SID International Symposium, 2017, 48, 742-745.	0.1	1
191	20â€1: <i>Invited Paper: </i> i> Towards Deepâ€Blue Materials with Efficient Triplet Harvesting. Digest of Technical Papers SID International Symposium, 2018, 49, 239-242.	0.1	1
192	A tale of two tables. Nature Chemistry, 2019, 11, 757-759.	6.6	1
193	Synthesis and optoelectronic properties of benzoquinone-based donor–acceptor compounds. Beilstein Journal of Organic Chemistry, 2019, 15, 2914-2921.	1.3	1
194	19â€2: <i>Invited Paper:</i> Design of Multiâ€Resonance Thermally Activated Delayed Fluorescence Materials for Organic Lightâ€Emitting Diodes. Digest of Technical Papers SID International Symposium, 2021, 52, 228-231.	0.1	1
195	Effect of a twin-emitter design strategy on a previously reported thermally activated delayed fluorescence organic light-emitting diode. Beilstein Journal of Organic Chemistry, 2021, 17, 2894-2905.	1.3	1
196	Optimization of the Synthesis of Symmetric Aromatic Tri- and Tetrasulfides ChemInform, 2003, 34, no.	0.1	0
197	Synthesis of New Cyclic Thionosulfites ChemInform, 2004, 35, no.	0.1	0
198	Dialkoxy Disulfides and Their Branch-Bonded Thionosulfite Isomers. ChemInform, 2004, 35, no.	0.1	0

#	Article	IF	CITATIONS
199	Investigation of the Relationship Between the Molecular Structure and the Thermal Stabilization of the Smectic C Phase in Four Series of Calamitic Smectogens. Ferroelectrics, 2012, 431, 32-39.	0.3	0
200	Photonics: general discussion. Faraday Discussions, 2014, 174, 235-253.	1.6	0
201	Frontispiece: Multimetallic and Mixed Environment Iridium(III) Complexes: A Modular Approach to Luminescence Tuning Using a Host Platform. Chemistry - A European Journal, 2017, 23, .	1.7	0
202	Analyzing the Relation between Structure and Aggregation Induced Emission (AIE) Properties of Iridium(III) Complexes through Modification of Non-Chromophoric Ancillary Ligands. European Journal of Inorganic Chemistry, 2019, 2019, 135-135.	1.0	0
203	24.2: Invited Paper: Design of multiâ€resonance thermally activated delayed fluorescence materials for organic lightâ€emitting diodes. Digest of Technical Papers SID International Symposium, 2021, 52, 312-316.	0.1	0
204	Azetidinium Lead Halide Ruddlesden–Popper Phases. Molecules, 2021, 26, 6474.	1.7	0
205	Materials for thermally activated delayed fluorescence and/or triplet fusion upconversion. Journal of Materials Chemistry C, 2022, 10, 4454-4455.	2.7	0