
Wen-Xiong Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10447204/publications.pdf Version: 2024-02-01

WEN-XIONC WANC

#	Article	IF	CITATIONS
1	Bioimaging of metals in environmental toxicological studies: Linking localization and functionality. Critical Reviews in Environmental Science and Technology, 2022, 52, 3384-3414.	6.6	15
2	Dynamics of trace metals with different size species in the Pearl River Estuary, Southern China. Science of the Total Environment, 2022, 807, 150712.	3.9	16
3	Maternal transfer and biodistribution of citrate and luminogens coated silver nanoparticles in medaka fish. Journal of Hazardous Materials, 2022, 433, 128862.	6.5	9
4	High Tolerance and Delayed Responses of <i>Daphnia magna</i> to Neonicotinoid Insecticide Imidacloprid: Toxicokinetic and Toxicodynamic Modeling. Environmental Science & Technology, 2021, 55, 458-467.	4.6	26
5	Intra- and Intercellular Silver Nanoparticle Translocation and Transformation in Oyster Gill Filaments: Coupling Nanoscale Secondary Ion Mass Spectrometry and Dual Stable Isotope Tracing Study. Environmental Science & Technology, 2021, 55, 433-446.	4.6	29
6	Novel Imaging of Silver Nanoparticle Uptake by a Unicellular Alga and Trophic Transfer to <i>Daphnia magna</i> . Environmental Science & Technology, 2021, 55, 5143-5151.	4.6	39
7	Silver nanowires kinetics and real-time imaging of in situ Ag ion dissolution in Daphnia magna. Science of the Total Environment, 2021, 782, 146933.	3.9	5
8	Biodynamics of Silver Nanoparticles in an Estuarine Oyster Revealed by ^{110m} AgNP Tracing. Environmental Science & Technology, 2020, 54, 965-974.	4.6	15
9	Environmental Pollution of the Pearl River Estuary, China. Estuaries of the World, 2020, , .	0.1	7
10	Direct Visualization and Quantification of Maternal Transfer of Silver Nanoparticles in Zooplankton. Environmental Science & Technology, 2020, 54, 10763-10771.	4.6	19
11	Using Zn Isotopic Signatures for Source Identification in a Contaminated Estuary of Southern China. Environmental Science & Technology, 2020, 54, 5140-5149.	4.6	20
12	Trace Metals in the Water Column and Sediments. Estuaries of the World, 2020, , 37-55.	0.1	0
13	Biomarker responses in oysters Crassostrea hongkongensis in relation to metal contamination patterns in the Pearl River Estuary, southern China. Environmental Pollution, 2019, 251, 264-276.	3.7	23
14	Dietary metal bioavailability in razor clam Sinonovacula constricta under fluctuating seston environments. Science of the Total Environment, 2019, 653, 131-139.	3.9	8
15	Diet-specific trophic transfer of mercury in tilapia (Oreochromis niloticus): Biodynamic perspective. Environmental Pollution, 2018, 234, 288-296.	3.7	19
16	<i>In Vivo</i> Bioimaging of Silver Nanoparticle Dissolution in the Gut Environment of Zooplankton. ACS Nano, 2018, 12, 12212-12223.	7.3	49
17	Trace metals in oysters: molecular and cellular mechanisms and ecotoxicological impacts. Environmental Sciences: Processes and Impacts, 2018, 20, 892-912.	1.7	48
18	Seasonal and spatial variations of biomarker responses of rock oysters in a coastal environment influenced by large estuary input. Environmental Pollution, 2018, 242, 1253-1265.	3.7	22

#	Article	IF	CITATIONS
19	Prey-specific determination of arsenic bioaccumulation and transformation in a marine benthic fish. Science of the Total Environment, 2017, 586, 296-303.	3.9	18
20	Bioaccumulationâ€based silver nanoparticle toxicity in <i>Daphnia magna</i> and maternal impacts. Environmental Toxicology and Chemistry, 2017, 36, 3359-3366.	2.2	18
21	Influences of TiO2 nanoparticles on dietary metal uptake in Daphnia magna. Environmental Pollution, 2017, 231, 311-318.	3.7	22
22	Heavy Metals in Bivalve Mollusks. , 2017, , 553-594.		21
23	High bioconcentration of titanium dioxide nanoparticles in Daphnia magna determined by kinetic approach. Science of the Total Environment, 2016, 569-570, 1224-1231.	3.9	27
24	Two-Compartment Kinetic Modeling of Radiocesium Accumulation in Marine Bivalves under Hypothetical Exposure Regimes. Environmental Science & Technology, 2016, 50, 2677-2684.	4.6	10
25	Comparison of mercury bioaccumulation between wild and mariculture food chains from a subtropical bay of Southern China. Environmental Geochemistry and Health, 2016, 38, 39-49.	1.8	20
26	Significance of physicochemical and uptake kinetics in controlling the toxicity of metallic nanomaterials to aquatic organisms. Journal of Zhejiang University: Science A, 2014, 15, 573-592.	1.3	33
27	Mercury in Wild Fish from High-Altitude Aquatic Ecosystems in the Tibetan Plateau. Environmental Science & Technology, 2014, 48, 5220-5228.	4.6	61
28	Dietary toxicity of metals in aquatic animals: Recent studies and perspectives. Science Bulletin, 2013, 58, 203-213.	1.7	50
29	Dioxin and phthalate uptake and assimilation by the green mussel Perna viridis. Environmental Pollution, 2013, 178, 455-462.	3.7	5
30	Bioaccessibility of 12 trace elements in marine molluscs. Food and Chemical Toxicology, 2013, 55, 627-636.	1.8	58
31	Distinct biokinetic behavior of ZnO nanoparticles in Daphnia magna quantified by synthesizing 65Zn tracer. Water Research, 2013, 47, 895-902.	5.3	36
32	Spatial variation and subcellular binding of metals in oysters from a large estuary in China. Marine Pollution Bulletin, 2013, 70, 274-280.	2.3	50
33	Rapid Assessments of Metal Bioavailability in Marine Sediments Using Coelomic Fluid of Sipunculan Worms. Environmental Science & Technology, 2013, 47, 7499-7505.	4.6	37
34	Evolutionary Patterns in Trace Metal (Cd and Zn) Efflux Capacity in Aquatic Organisms. Environmental Science & Technology, 2013, 47, 7989-7995.	4.6	31
35	Regulation of sodium and calcium in <i>Daphnia magna</i> exposed to silver nanoparticles. Environmental Toxicology and Chemistry, 2013, 32, 913-919.	2.2	9
36	Contrasting mercury accumulation patterns in tilapia (Oreochromis niloticus) and implications on somatic growth dilution. Aquatic Toxicology, 2012, 114-115, 23-30.	1.9	29

#	Article	IF	CITATIONS
37	Two-Compartment Toxicokinetic–Toxicodynamic Model to Predict Metal Toxicity in <i>Daphnia magna</i> . Environmental Science & Technology, 2012, 46, 9709-9715.	4.6	49
38	Role of Titanium Dioxide Nanoparticles in the Elevated Uptake and Retention of Cadmium and Zinc in <i>Daphnia magna</i> . Environmental Science & Technology, 2012, 46, 469-476.	4.6	116
39	Size-Dependent Uptake of Silver Nanoparticles in Daphnia magna. Environmental Science & Technology, 2012, 46, 11345-11351.	4.6	107
40	Importance of surface coatings and soluble silver in silver nanoparticles toxicity to <i>Daphnia magna</i> . Nanotoxicology, 2012, 6, 361-370.	1.6	135
41	Spatial distribution of gut juice extractable Cu, Pb and Zn in sediments from the Pearl River Estuary, Southern China. Marine Environmental Research, 2012, 77, 112-119.	1.1	17
42	Mercury distribution, speciation and bioavailability in sediments from the Pearl River Estuary, Southern China. Marine Pollution Bulletin, 2012, 64, 1699-1704.	2.3	57
43	Factors Affecting the Bioaccessibility of Methylmercury in Several Marine Fish Species. Journal of Agricultural and Food Chemistry, 2011, 59, 7155-7162.	2.4	51
44	Arsenic bioaccumulation in a marine juvenile fish Terapon jarbua. Aquatic Toxicology, 2011, 105, 582-588.	1.9	45
45	Incorporating exposure into aquatic toxicological studies: An imperative. Aquatic Toxicology, 2011, 105, 9-15.	1.9	36
46	Sponges and sediments as monitoring tools of metal contamination in the eastern coast of the Red Sea, Saudi Arabia. Marine Pollution Bulletin, 2011, 62, 1140-1146.	2.3	70
47	Mercury accumulation in marine bivalves: Influences of biodynamics and feeding niche. Environmental Pollution, 2011, 159, 2500-2506.	3.7	55
48	Trophically available metal – A variable feast. Environmental Pollution, 2011, 159, 2347-2349.	3.7	73
49	Bioaccumulation and trophic transfer of dioxins in marine copepods and fish. Environmental Pollution, 2011, 159, 3390-3397.	3.7	22
50	Accumulation and partitioning of seven trace metals in mangroves and sediment cores from three estuarine wetlands of Hainan Island, China. Journal of Hazardous Materials, 2011, 190, 631-638.	6.5	145
51	Comparison of acute and chronic toxicity of silver nanoparticles and silver nitrate to <i>Daphnia magna</i> . Environmental Toxicology and Chemistry, 2011, 30, 885-892.	2.2	200
52	Copper and zinc contamination in oysters: Subcellular distribution and detoxification. Environmental Toxicology and Chemistry, 2011, 30, 1767-1774.	2.2	122
53	The distribution and speciation of trace metals in surface sediments from the Pearl River Estuary and the Daya Bay, Southern China. Marine Pollution Bulletin, 2010, 60, 1364-1371.	2.3	147
54	Mercury exposure in the freshwater tilapia Oreochromis niloticus. Environmental Pollution, 2010, 158, 2694-2701.	3.7	70

#	Article	IF	CITATIONS
55	Effects of Cooking and Subcellular Distribution on the Bioaccessibility of Trace Elements in Two Marine Fish Species. Journal of Agricultural and Food Chemistry, 2010, 58, 3517-3523.	2.4	99
56	Importance of Speciation in Understanding Mercury Bioaccumulation in Tilapia Controlled by Salinity and Dissolved Organic Matter. Environmental Science & Technology, 2010, 44, 7964-7969.	4.6	35
57	Biokinetic Uptake and Efflux of Silver Nanoparticles in <i>Daphnia magna</i> . Environmental Science & Technology, 2010, 44, 7699-7704.	4.6	154
58	Bioaccumulation and Trophic Transfer of Selenium. , 2010, , 93-139.		61
59	Current status and historical trends of organochlorine pesticides in the ecosystem of Deep Bay, South China. Estuarine, Coastal and Shelf Science, 2009, 85, 265-272.	0.9	43
60	Aqueous and dietary copper uptake and elimination in <i>Daphnia magna</i> determined by the ⁶⁷ CU radiotracer. Environmental Toxicology and Chemistry, 2009, 28, 2360-2366.	2.2	23
61	Controls of Dissolved Organic Matter and Chloride on Mercury Uptake by a Marine Diatom. Environmental Science & Technology, 2009, 43, 8998-9003.	4.6	60
62	Bioaccessibility of essential and non-essential metals in commercial shellfish from Western Europe and Asia. Food and Chemical Toxicology, 2008, 46, 2010-2022.	1.8	144
63	BIOKINETICS AND TOLERANCE DEVELOPMENT OF TOXIC METALS IN DAPHNIA MAGNA. Environmental Toxicology and Chemistry, 2007, 26, 1023.	2.2	81
64	Acute Toxicity of Mercury to Daphnia magna under Different Conditions. Environmental Science & Technology, 2006, 40, 4025-4030.	4.6	51
65	Comparison between two clones of Daphnia magna: Effects of multigenerational cadmium exposure on toxicity, individual fitness, and biokinetics. Aquatic Toxicology, 2006, 76, 217-229.	1.9	47
66	Accumulation and elimination of aqueous and dietary silver in Daphnia magna. Chemosphere, 2006, 64, 26-35.	4.2	26
67	SUBCELLULAR CADMIUM DISTRIBUTION, ACCUMULATION, AND TOXICITY IN A PREDATORY GASTROPOD, THAIS CLAVIGERA, FED DIFFERENT PREY. Environmental Toxicology and Chemistry, 2006, 25, 174.	2.2	30
68	INFLUENCES OF MATERNAL EXPOSURE ON THE TOLERANCE AND PHYSIOLOGICAL PERFORMANCE OF DAPHNIA MAGNA UNDER MERCURY STRESS. Environmental Toxicology and Chemistry, 2005, 24, 1228.	2.2	37
69	MULTIGENERATIONAL ACCLIMATION OF DAPHNIA MAGNA TO MERCURY: RELATIONSHIPS BETWEEN BIOKINETICS AND TOXICITY. Environmental Toxicology and Chemistry, 2005, 24, 2927.	2.2	39
70	Uptake, absorption efficiency and elimination of DDT in marine phytoplankton, copepods and fish. Environmental Pollution, 2005, 136, 453-464.	3.7	44
71	Influence of glyphosate and its formulation (Roundup®) on the toxicity and bioavailability of metals to Ceriodaphnia dubia. Environmental Pollution, 2005, 138, 59-68.	3.7	68
72	MATERNAL TRANSFER EFFICIENCY AND TRANSGENERATIONAL TOXICITY OF METHYLMERCURY IN DAPHNIA MAGNA. Environmental Toxicology and Chemistry, 2004, 23, 1504.	2.2	46

#	Article	IF	CITATIONS
73	Silver uptake by a marine diatom and its transfer to the coastal copepod <i>Acartia spinicauda</i> . Environmental Toxicology and Chemistry, 2004, 23, 682-690.	2.2	22
74	Uptake and Elimination Routes of Inorganic Mercury and Methylmercury inDaphnia magna. Environmental Science & Technology, 2004, 38, 808-816.	4.6	145
75	Understanding the Differences in Cd and Zn Bioaccumulation and Subcellular Storage among Different Populations of Marine Clams. Environmental Science & Technology, 2004, 38, 449-456.	4.6	85
76	Influences of dissolved and colloidal organic carbon on the uptake of Ag, Cd, and Cr by the marine mussel Perna viridis. Environmental Pollution, 2004, 129, 467-477.	3.7	43
77	Modification of trace metal accumulation in the green mussel Perna viridis by exposure to Ag, Cu, and Zn. Environmental Pollution, 2004, 132, 265-277.	3.7	44
78	Temperature influences on the accumulation and elimination of mercury in a freshwater cladoceran, Daphnia magna. Aquatic Toxicology, 2004, 70, 245-256.	1.9	39
79	Combined effects of food quantity and quality on Cd, Cr, and Zn assimilation to the green mussel, Perna viridis. Journal of Experimental Marine Biology and Ecology, 2003, 290, 49-69.	0.7	34
80	Comparison of metal accumulation in mussels at different local and global scales. Environmental Toxicology and Chemistry, 2003, 22, 388-395.	2.2	68
81	Marine diatom uptake of iron bound with natural colloids of different origins. Marine Chemistry, 2003, 81, 177-189.	0.9	86
82	Effects of Aqueous and Dietary Preexposure and Resulting Body Burden on Silver Biokinetics in the Green MusselPerna viridis. Environmental Science & Technology, 2003, 37, 936-943.	4.6	35
83	Inter-population differences in Cd, Cr, Se, and Zn accumulation by the green mussel Perna viridis acclimated at different salinities. Aquatic Toxicology, 2003, 62, 205-218.	1.9	60
84	Uptake and Efflux of Cd and Zn by the Green MusselPerna viridisafter Metal Preexposure. Environmental Science & Technology, 2002, 36, 989-995.	4.6	99
85	Trophic transfer of heavy metals from freshwater zooplankton Daphnia magna to zebrafish Danio reiro. Water Research, 2002, 36, 4563-4569.	5.3	51
86	Cu, Ni, and Pb speciation in surface sediments from a contaminated bay of northern China. Marine Pollution Bulletin, 2002, 44, 820-826.	2.3	63
87	Benzo[<i>a</i>]pyrene absorption and exposure pathways in the green mussel <i>Perna viridis</i> . Environmental Toxicology and Chemistry, 2002, 21, 451-458.	2.2	20
88	Kinetic uptake of bioavailable cadmium, selenium, and zinc by <i>Daphnia magna</i> . Environmental Toxicology and Chemistry, 2002, 21, 2348-2355.	2.2	67
89	Bioaccumulation of Cd, Se, and Zn in an estuarine oyster (Crassostrea rivularis) and a coastal oyster (Saccostrea glomerata). Aquatic Toxicology, 2001, 56, 33-51.	1.9	118
90	Effects of major nutrient additions on metal uptake in phytoplankton. Environmental Pollution, 2001, 111, 233-240.	3.7	115

#	Article	IF	CITATIONS
91	Influences of phosphate and silicate on Cr(VI) and Se(IV) accumulation in marine phytoplankton. Aquatic Toxicology, 2001, 52, 39-47.	1.9	37
92	Biological uptake and assimilation of iron by marine plankton: influences of macronutrients. Marine Chemistry, 2001, 74, 213-226.	0.9	23
93	Influences of metal concentration in phytoplankton and seawater on metal assimilation and elimination in marine copepods. Environmental Toxicology and Chemistry, 2001, 20, 1067-1077.	2.2	43
94	Radiotracer studies on the feeding of two marine bivalves on the toxic and nontoxic dinoflagellate Alexandrium tamarense. Journal of Experimental Marine Biology and Ecology, 2001, 263, 65-75.	0.7	16
95	Assimilation of cadmium, chromium, and zinc by the green mussel <i>Perna viridis</i> and the clam <i>Ruditapes philippinarum</i> . Environmental Toxicology and Chemistry, 2000, 19, 1660-1667.	2.2	81
96	Bioavailability of sediment-bound Cd, Cr and Zn to the green mussel Perna viridis and the Manila clam Ruditapes philippinarum. Journal of Experimental Marine Biology and Ecology, 2000, 255, 75-92.	0.7	53
97	Influences of Natural Colloids on Metal Bioavailability to Two Marine Bivalves. Environmental Science & Technology, 2000, 34, 4571-4576.	4.6	69
98	Effects of calcium and metabolic inhibitors on trace element uptake in two marine bivalves. Journal of Experimental Marine Biology and Ecology, 1999, 236, 149-164.	0.7	59
99	Assimilation efficiencies of chemical contaminants in aquatic invertebrates: A synthesis. Environmental Toxicology and Chemistry, 1999, 18, 2034-2045.	2.2	331
100	Delineating metal accumulation pathways for marine invertebrates. Science of the Total Environment, 1999, 237-238, 459-472.	3.9	238
101	Trophic transfer of silver to marine herbivores: A review of recent studies. Environmental Toxicology and Chemistry, 1998, 17, 562-571.	2.2	46
102	Bioavailability of Inorganic and Methylmercury to a Marine Deposit-Feeding Polychaete. Environmental Science & Technology, 1998, 32, 2564-2571.	4.6	62
103	Accumulation of trace elements in a marine copepod. Limnology and Oceanography, 1998, 43, 273-283.	1.6	175
104	Bioavailability of Cr(III) and Cr(VI) to Marine Mussels from Solute and Particulate Pathways. Environmental Science & Technology, 1997, 31, 603-611.	4.6	130
105	Modeling Metal Bioavailability for Marine Mussels. Reviews of Environmental Contamination and Toxicology, 1997, , 39-65.	0.7	48
106	Accumulation and Retention of Metals in Mussels from Food and Water:Â A Comparison under Field and Laboratory Conditions. Environmental Science & Technology, 1996, 30, 3232-3242.	4.6	142
107	Assimilation of trace elements and carbon by the mussel <i>Mytilus edulis</i> : Effects of food composition. Limnology and Oceanography, 1996, 41, 197-207.	1.6	202