Daniel Jones

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/104470/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Linkages between sediment thickness, geomorphology and Mn nodule occurrence: New evidence from AUV geophysical mapping in the Clarion-Clipperton Zone. Deep-Sea Research Part I: Oceanographic Research Papers, 2022, 179, 103645.	0.6	4
2	AURORA, a multi-sensor dataset for robotic ocean exploration. International Journal of Robotics Research, 2022, 41, 461-469.	5.8	6
3	Drivers of Biomass and Biodiversity of Non-Chemosynthetic Benthic Fauna of the Mid-Atlantic Ridge in the North Atlantic. Frontiers in Marine Science, 2022, 9, .	1.2	2
4	Gelatinous Carbon Impacts Benthic Megafaunal Communities in a Continental Margin. Frontiers in Marine Science, 2022, 9, .	1.2	2
5	Benthic scavenger community composition and carrion removal in Arctic and Subarctic fjords. Polar Biology, 2021, 44, 31-43.	0.5	6
6	Recommendations for the Standardisation of Open Taxonomic Nomenclature for Image-Based Identifications. Frontiers in Marine Science, 2021, 8, .	1.2	56
7	Environmental Heterogeneity Throughout the Clarion-Clipperton Zone and the Potential Representativity of the APEI Network. Frontiers in Marine Science, 2021, 8, .	1.2	26
8	The megafauna community from an abyssal area of interest for mining of polymetallic nodules. Deep-Sea Research Part I: Oceanographic Research Papers, 2021, 172, 103530.	0.6	7
9	Megafaunal Ecology of the Western Clarion Clipperton Zone. Frontiers in Marine Science, 2021, 8, .	1.2	13
10	Biogeography and Connectivity Across Habitat Types and Geographical Scales in Pacific Abyssal Scavenging Amphipods. Frontiers in Marine Science, 2021, 8, .	1.2	12
11	Spatial Variability of Abyssal Nitrifying Microbes in the North-Eastern Clarion-Clipperton Zone. Frontiers in Marine Science, 2021, 8, .	1.2	8
12	Regional Variation in Communities of Demersal Fishes and Scavengers Across the CCZ and Pacific Ocean. Frontiers in Marine Science, 2021, 8, .	1.2	15
13	Ecological considerations for marine spatial management in deep-water Tanzania. Ocean and Coastal Management, 2021, 210, 105703.	2.0	4
14	Environment, ecology, and potential effectiveness of an area protected from deep-sea mining (Clarion) Tj ETQq() 0 0 _{1.5} gBT	/Overlock 10
15	Environmental considerations for impact and preservation reference zones for deep-sea polymetallic nodule mining. Marine Policy, 2020, 118, .	1.5	39
16	Deep-sea sponge aggregations (Pheronema carpenteri) in the Porcupine Seabight (NE Atlantic) potentially degraded by demersal fishing. Progress in Oceanography, 2020, 183, 102189.	1.5	15
17	The ecology of infrastructure decommissioning in the North Sea: what we need to know and how to achieve it. ICES Journal of Marine Science, 2020, 77, 1109-1126.	1.2	42
18	Environmental controls and anthropogenic impacts on deep-sea sponge grounds in the Faroe-Shetland Channel, NE Atlantic: the importance of considering spatial scale to distinguish drivers of change. ICES Journal of Marine Science, 2020, 77, 2009-2009.	1.2	2

#	Article	IF	CITATIONS
19	Multi-scale variations in invertebrate and fish megafauna in the mid-eastern Clarion Clipperton Zone. Progress in Oceanography, 2020, 187, 102405.	1.5	44
20	Global variability in seawater Mg:Ca and Sr:Ca ratios in the modern ocean. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 22281-22292.	3.3	62
21	Climate change considerations are fundamental to management of deepâ€sea resource extraction. Global Change Biology, 2020, 26, 4664-4678.	4.2	65
22	Evidence for seasonal cycles in deepâ€sea fish abundances: A great migration in the deep SE Atlantic?. Journal of Animal Ecology, 2020, 89, 1593-1603.	1.3	17
23	Coldâ€water coral assemblages on vertical walls from the Northeast Atlantic. Diversity and Distributions, 2020, 26, 284-298.	1.9	17
24	Enhancing the Scientific Value of Industry Remotely Operated Vehicles (ROVs) in Our Oceans. Frontiers in Marine Science, 2020, 7, .	1.2	43
25	Deep-sea mining. , 2020, , 91-110.		4
26	Megafauna community assessment of polymetallic-nodule fields with cameras: platform and methodology comparison. Biogeosciences, 2020, 17, 3115-3133.	1.3	24
27	Change detection in a Marine Protected Area (MPA) over three decades on Bonaire, Dutch Caribbean. Journal of the Marine Biological Association of the United Kingdom, 2019, 99, 761-770.	0.4	0
28	Ecology of a polymetallic nodule occurrence gradient: Implications for deepâ€sea mining. Limnology and Oceanography, 2019, 64, 1883-1894.	1.6	82
29	Detecting the Effects of Deep-Seabed Nodule Mining: Simulations Using Megafaunal Data From the Clarion-Clipperton Zone. Frontiers in Marine Science, 2019, 6, .	1.2	14
30	Environmental controls and anthropogenic impacts on deep-sea sponge grounds in the Faroe-Shetland Channel, NE Atlantic: the importance of considering spatial scale to distinguish drivers of change. ICES Journal of Marine Science, 2019, , .	1.2	2
31	Global Observing Needs in the Deep Ocean. Frontiers in Marine Science, 2019, 6, .	1.2	166
32	Biological effects 26 years after simulated deep-sea mining. Scientific Reports, 2019, 9, 8040.	1.6	81
33	On the impact of Citizen Science-derived data quality on deep learning based classification in marine images. PLoS ONE, 2019, 14, e0218086.	1.1	26
34	Improving Environmental Management Practices in Deep-Sea Mining. , 2019, , 403-446.		8
35	Ecological risk assessment for deep-sea mining. Ocean and Coastal Management, 2019, 176, 24-39.	2.0	73
36	Autonomous marine environmental monitoring: Application in decommissioned oil fields. Science of the Total Environment, 2019, 668, 835-853.	3.9	76

#	Article	IF	CITATIONS
37	Existing environmental management approaches relevant to deep-sea mining. Marine Policy, 2019, 103, 172-181.	1.5	48
38	A framework for the development of a global standardised marine taxon reference image database (SMarTaR-ID) to support image-based analyses. PLoS ONE, 2019, 14, e0218904.	1.1	40
39	Preliminary Observations of the Abyssal Megafauna of Kiribati. Frontiers in Marine Science, 2019, 6, .	1.2	14
40	Ecological Role of an Offshore Industry Artificial Structure. Frontiers in Marine Science, 2019, 6, .	1.2	20
41	Bathyal benthic megafauna from the Midâ€Atlantic Ridge in the region of the Charlie-Gibbs fracture zone based on remotely operated vehicle observations. Deep-Sea Research Part I: Oceanographic Research Papers, 2019, 145, 1-12.	0.6	13
42	Megafaunal variation in the abyssal landscape of the Clarion Clipperton Zone. Progress in Oceanography, 2019, 170, 119-133.	1.5	84
43	Scavenging processes on jellyfish carcasses across a fjord depth gradient. Limnology and Oceanography, 2018, 63, 1146-1155.	1.6	13
44	Eyes in the sea: Unlocking the mysteries of the ocean using industrial, remotely operated vehicles (ROVs). Science of the Total Environment, 2018, 634, 1077-1091.	3.9	86
45	Behavioural modification of local hydrodynamics by asteroids enhances reproductive success. Journal of Experimental Marine Biology and Ecology, 2018, 501, 16-25.	0.7	1
46	Incorporating transparency into the governance of deep-seabed mining in the Area beyond national jurisdiction. Marine Policy, 2018, 89, 58-66.	1.5	48
47	Understanding the Global Scientific Value of Industry ROV Data, to Quantify Marine Ecology and Guide Offshore Decommissioning Strategies. , 2018, , .		16
48	First sighting of a siphonophore of the genus Bathyphysa from the South Atlantic. Marine Biodiversity, 2018, 48, 1279-1280.	0.3	3
49	Environmental Impact Assessment process for deep-sea mining in â€~the Area'. Marine Policy, 2018, 87, 194-202.	1.5	94
50	Mining Deep-Ocean Mineral Deposits: What are the Ecological Risks?. Elements, 2018, 14, 325-330.	0.5	54
51	Potential Mitigation and Restoration Actions in Ecosystems Impacted by Seabed Mining. Frontiers in Marine Science, 2018, 5, .	1.2	48
52	Implications of population connectivity studies for the design of marine protected areas in the deep sea: An example of a demosponge from the Clarionâ€Clipperton Zone. Molecular Ecology, 2018, 27, 4657-4679.	2.0	37
53	New species of the xenophyophore genus Aschemonella (Rhizaria: Foraminifera) from areas of the abyssal eastern Pacific licensed for polymetallic nodule exploration. Zoological Journal of the Linnean Society, 2018, 182, 479-499.	1.0	14
54	Potential Impacts of Offshore Oil and Gas Activities on Deep-Sea Sponges and the Habitats They Form. Advances in Marine Biology, 2018, 79, 33-60.	0.7	19

#	Article	IF	CITATIONS
55	Environmental benefits of leaving offshore infrastructure in the ocean. Frontiers in Ecology and the Environment, 2018, 16, 571-578.	1.9	93
56	Deep-Sea Mining With No Net Loss of Biodiversity—An Impossible Aim. Frontiers in Marine Science, 2018, 5, .	1.2	99
57	Abyssal plain faunal carbon flows remain depressed 26 years after a simulated deep-sea mining disturbance. Biogeosciences, 2018, 15, 4131-4145.	1.3	49
58	Recovery of Holothuroidea population density, community composition, and respiration activity after a deepâ€sea disturbance experiment. Limnology and Oceanography, 2018, 63, 2140-2153.	1.6	13
59	Metabolic rates are significantly lower in abyssal Holothuroidea than in shallow-water Holothuroidea. Royal Society Open Science, 2018, 5, 172162.	1.1	15
60	Geomorphological evidence of large vertebrates interacting with the seafloor at abyssal depths in a region designated for deep-sea mining. Royal Society Open Science, 2018, 5, 180286.	1.1	24
61	Simulating pathways of subsurface oil in the Faroe–Shetland Channel using an ocean general circulation model. Marine Pollution Bulletin, 2017, 114, 315-326.	2.3	11
62	Resilience of benthic deep-sea fauna to mining activities. Marine Environmental Research, 2017, 129, 76-101.	1.1	258
63	Big in the benthos: Future change of seafloor community biomass in a global, body sizeâ€resolved model. Global Change Biology, 2017, 23, 3554-3566.	4.2	43
64	Compact-Morphology-based poly-metallic Nodule Delineation. Scientific Reports, 2017, 7, 13338.	1.6	38
65	New approaches to high-resolution mapping of marine vertical structures. Scientific Reports, 2017, 7, 9005.	1.6	50
66	A procedural framework for robust environmental management of deep-sea mining projects using a conceptual model. Marine Policy, 2017, 84, 193-201.	1.5	51
67	Metabolic costs imposed by hydrostatic pressure constrain bathymetric range in the lithodid crab <i>Lithodes maja</i> . Journal of Experimental Biology, 2017, 220, 3916-3926.	0.8	22
68	Biodiversity loss from deep-sea mining. Nature Geoscience, 2017, 10, 464-465.	5.4	154
69	Abundance and morphology of Paleodictyon nodosum, observed at the Clarion-Clipperton Zone. Marine Biodiversity, 2017, 47, 265-269.	0.3	13
70	Deep-sea observations at hydrocarbon drilling locations: Contributions from the SERPENT Project after 120 field visits. Deep-Sea Research Part II: Topical Studies in Oceanography, 2017, 137, 463-479.	0.6	40
71	First quantitative exploration of benthic megafaunal assemblages on the mid-oceanic ridge system of the Carlsberg Ridge, Indian Ocean. Journal of the Marine Biological Association of the United Kingdom, 2017, 97, 409-417.	0.4	2
72	Direct evidence of an efficient energy transfer pathway from jellyfish carcasses to a commercially important deep-water species. Scientific Reports, 2017, 7, 17455.	1.6	17

#	Article	IF	CITATIONS
73	Biological responses to disturbance from simulated deep-sea polymetallic nodule mining. PLoS ONE, 2017, 12, e0171750.	1.1	222
74	An association between a cusk eel (Bassozetus sp.) and a black coral (Schizopathes sp.) in the deep western Indian Ocean. Marine Biodiversity, 2017, 47, 971-977.	0.3	9
75	Major impacts of climate change on deep-sea benthic ecosystems. Elementa, 2017, 5, .	1.1	252
76	Controls on the standing crop of benthic foraminifera at an oceanic scale. Marine Ecology - Progress Series, 2017, 581, 71-83.	0.9	3
77	Environmental Impacts of the Deep-Water Oil and Gas Industry: A Review to Guide Management Strategies. Frontiers in Environmental Science, 2016, 4, .	1.5	236
78	Benthic marine calcifiers coexist with CaCO ₃ â€undersaturated seawater worldwide. Global Biogeochemical Cycles, 2016, 30, 1038-1053.	1.9	38
79	High resolution study of the spatial distributions of abyssal fishes by autonomous underwater vehicle. Scientific Reports, 2016, 6, 26095.	1.6	24
80	Benthic megafauna on steep slopes at the Northern Midâ€Atlantic Ridge. Marine Ecology, 2016, 37, 1290-1302.	0.4	18
81	Landscape-scale spatial heterogeneity in phytodetrital cover and megafauna biomass in the abyss links to modest topographic variation. Scientific Reports, 2016, 6, 34080.	1.6	42
82	Fully automated image segmentation for benthic resource assessment of poly-metallic nodules. Methods in Oceanography, 2016, 15-16, 78-89.	1.5	25
83	Improving predictive mapping of deep-water habitats: Considering multiple model outputs and ensemble techniques. Deep-Sea Research Part I: Oceanographic Research Papers, 2016, 113, 80-89.	0.6	51
84	Perspectives In Visual Imaging for Marine Biology and Ecology: From Acquisition to Understanding. Oceanography and Marine Biology, 2016, , 1-73.	1.0	21
85	Abyssal hills – hidden source of increased habitat heterogeneity, benthic megafaunal biomass and diversity in the deep sea. Progress in Oceanography, 2015, 137, 209-218.	1.5	92
86	The distribution of benthic biomass in hadal trenches: A modelling approach to investigate the effect of vertical and lateral organic matter transport to the seafloor. Deep-Sea Research Part I: Oceanographic Research Papers, 2015, 100, 21-33.	0.6	129
87	Hydrocarbon contamination affects deep-sea benthic oxygen uptake and microbial community composition. Deep-Sea Research Part I: Oceanographic Research Papers, 2015, 100, 79-87.	0.6	34
88	Finding the hotspots within a biodiversity hotspot: fineâ€scale biological predictions within a submarine canyon using highâ€resolution acoustic mapping techniques. Marine Ecology, 2015, 36, 1256-1276.	0.4	59
89	Marine Litter Distribution and Density in European Seas, from the Shelves to Deep Basins. PLoS ONE, 2014, 9, e95839.	1.1	495
90	Ecosystem function and services provided by the deep sea. Biogeosciences, 2014, 11, 3941-3963.	1.3	293

#	Article	IF	CITATIONS
91	Projected pH reductions by 2100 might put deep North Atlantic biodiversity at risk. Biogeosciences, 2014, 11, 6955-6967.	1.3	49
92	A new method for ecological surveying of the abyss using autonomous underwater vehicle photography. Limnology and Oceanography: Methods, 2014, 12, 795-809.	1.0	76
93	Asphalt mounds and associated biota on the Angolan margin. Deep-Sea Research Part I: Oceanographic Research Papers, 2014, 94, 124-136.	0.6	38
94	Gelatinous zooplankton biomass in the global oceans: geographic variation and environmental drivers. Global Ecology and Biogeography, 2014, 23, 701-714.	2.7	116
95	Global reductions in seafloor biomass in response to climate change. Global Change Biology, 2014, 20, 1861-1872.	4.2	155
96	A multi-criteria decision approach to decommissioning of offshore oil and gas infrastructure. Ocean and Coastal Management, 2014, 87, 20-29.	2.0	140
97	Rapid scavenging of jellyfish carcasses reveals the importance of gelatinous material to deep-sea food webs. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20142210.	1.2	76
98	Deep-sea benthic megafaunal habitat suitability modelling: A global-scale maximum entropy model for xenophyophores. Deep-Sea Research Part I: Oceanographic Research Papers, 2014, 94, 31-44.	0.6	17
99	Fish Food in the Deep Sea: Revisiting the Role of Large Food-Falls. PLoS ONE, 2014, 9, e96016.	1.1	74
100	Megafaunal distribution and biodiversity in a heterogeneous landscape: the iceberg-scoured Rockall Bank, NE Atlantic. Marine Ecology - Progress Series, 2014, 501, 67-88.	0.9	35
101	Trawled megafaunal invertebrate assemblages from bathyal depth of the Mid-Atlantic Ridge (48°–54°N). Deep-Sea Research Part II: Topical Studies in Oceanography, 2013, 98, 326-340.	0.6	18
102	Lebensspuren of the Bathyal Mid-Atlantic Ridge. Deep-Sea Research Part II: Topical Studies in Oceanography, 2013, 98, 341-351.	0.6	35
103	Bathyal demersal fishes of the Charlie-Gibbs Fracture Zone region (49°–54°N) of the Mid-Atlantic Ridge: III. Results from remotely operated vehicle (ROV) video transects. Deep-Sea Research Part II: Topical Studies in Oceanography, 2013, 98, 407-411.	0.6	11
104	Deep-sea surface-dwelling enteropneusts from the Mid-Atlantic Ridge: Their ecology, distribution and mode of life. Deep-Sea Research Part II: Topical Studies in Oceanography, 2013, 98, 374-387.	0.6	22
105	The ecology and biogeography of Discospirina tenuissima (Foraminifera) in the Atlantic and Indian Oceans. Deep-Sea Research Part II: Topical Studies in Oceanography, 2013, 98, 301-314.	0.6	8
106	Changes in deep-water epibenthic megafaunal assemblages in relation to seabed slope on the Nigerian margin. Deep-Sea Research Part I: Oceanographic Research Papers, 2013, 78, 49-57.	0.6	17
107	Biotic and Human Vulnerability to Projected Changes in Ocean Biogeochemistry over the 21st Century. PLoS Biology, 2013, 11, e1001682.	2.6	194
108	A Southeast Atlantic deepâ€ocean observatory: first experiences and results. Limnology and Oceanography: Methods, 2013, 11, 304-315.	1.0	24

#	Article	IF	CITATIONS
109	Unravelling the environmental drivers of deep-sea nematode biodiversity and its relation with carbon mineralisation along a longitudinal primary productivity gradient. Biogeosciences, 2013, 10, 3127-3143.	1.3	28
110	Benthic-Pelagic Coupling: Effects on Nematode Communities along Southern European Continental Margins. PLoS ONE, 2013, 8, e59954.	1.1	26
111	Does Presence of a Mid-Ocean Ridge Enhance Biomass and Biodiversity?. PLoS ONE, 2013, 8, e61550.	1.1	68
112	Creating Landscape-Scale Maps of Coral Reef Cover for Marine Reserve Management from High-Resolution Multispectral Remote Sensing. GIScience and Remote Sensing, 2012, 49, 251-274.	2.4	1
113	<i>In situ</i> video observations of benthic megafauna and fishes from the deep eastern Mediterranean Sea off Egypt. African Journal of Marine Science, 2012, 34, 215-222.	0.4	10
114	Effects of oil drilling activity on the deep water megabenthos of the Orinoco Fan, Venezuela. Journal of the Marine Biological Association of the United Kingdom, 2012, 92, 245-253.	0.4	4
115	Response of megabenthic assemblages to different scales of habitat heterogeneity on the Mauritanian slope. Deep-Sea Research Part I: Oceanographic Research Papers, 2012, 67, 98-110.	0.6	19
116	Temporal and depth-related differences in prokaryotic communities in abyssal sediments associated with particulate organic carbon flux. Deep-Sea Research Part I: Oceanographic Research Papers, 2012, 70, 26-35.	0.6	13
117	The influence of productivity on abyssal foraminiferal biodiversity. Marine Biodiversity, 2012, 42, 415-431.	0.3	18
118	The temporal and spatial distribution of krill (<i>Meganyctiphanes norvegica</i>) at the deep seabed of the Faroe–Shetland Channel, UK: A potential mechanism for rapid carbon flux to deep sea communities. Marine Biology Research, 2012, 8, 48-60.	0.3	15
119	Jelly-falls historic and recent observations: a review to drive future research directions. Hydrobiologia, 2012, 690, 227-245.	1.0	83
120	Observations on torquaratorid acorn worms (<scp>H</scp> emichordata, <scp>E</scp> nteropneusta) from the <scp>N</scp> orth <scp>A</scp> tlantic with descriptions of a new genus and three new species. Invertebrate Biology, 2012, 131, 244-257.	0.3	29
121	Jelly-falls historic and recent observations: a review to drive future research directions. , 2012, , 227-245.		2
122	Recovery of Benthic Megafauna from Anthropogenic Disturbance at a Hydrocarbon Drilling Well (380) Tj ETQq0	0 Q rgBT /	Overlock 10 40
123	Recovery of deep-water megafaunal assemblages from hydrocarbon drilling disturbance in the Faroeâ^'Shetland Channel. Marine Ecology - Progress Series, 2012, 461, 71-82.	0.9	44
124	Using Industrial Remotely Operated Vehicles in Stand-by Time for Deep-water Biodiversity Assessment: A Case Study From Offshore Nigeria. , 2011, , .		0
125	Depth attenuation of organic matter export associated with jelly falls. Limnology and Oceanography, 2011, 56, 1917-1928.	1.6	34
			_

Expanding the oceanic carbon cycle: Jellyfish biomass in the biological pump. Biochemist, 2011, 33, 35-39. 0.2 6

#	Article	IF	CITATIONS
127	An assessment of drilling disturbance on Echinus acutus var. norvegicus based on in-situ observations and experiments using a remotely operated vehicle (ROV). Journal of Experimental Marine Biology and Ecology, 2010, 395, 37-47.	0.7	26
128	Global contribution of echinoderms to the marine carbon cycle: CaCO ₃ budget and benthic compartments. Ecological Monographs, 2010, 80, 441-467.	2.4	92
129	Assessing the Effects of Hydrocarbon Drilling Activity on Deep-water Megafauna in the Northern North Atlantic. A Rapid Universal Assessment Method?. , 2010, , .		4
130	Mass deposition event of <i>Pyrosoma atlanticum</i> carcasses off Ivory Coast (West Africa). Limnology and Oceanography, 2009, 54, 1197-1209.	1.6	92
131	The use of towed camera platforms in deep-water science. Underwater Technology, 2009, 28, 41-50.	0.3	42
132	Using existing industrial remotely operated vehicles for deepâ€sea science. Zoologica Scripta, 2009, 38, 41-47.	0.7	43
133	Techniques for monitoring the recovery of deep, cold-water habitats following physical disturbance from drilling discharges. , 2008, , .		0
134	Autonomous underwater vehicles (AUVs) and investigations of the ice–ocean interface in Antarctic and Arctic waters. Journal of Glaciology, 2008, 54, 661-672.	1.1	67
135	Megabenthic ecology of the deep Faroe–Shetland channel: A photographic study. Deep-Sea Research Part I: Oceanographic Research Papers, 2007, 54, 1111-1128.	0.6	47
136	Depth-related changes in the arctic epibenthic megafaunal assemblages of Kangerdlugssuaq, East Greenland. Marine Biology Research, 2007, 3, 191-204.	0.3	22
137	Anthropogenic disturbance of deep-sea megabenthic assemblages: a study with remotely operated vehicles in the Faroe-Shetland Channel, NE Atlantic. Marine Biology, 2007, 151, 1731-1741.	0.7	47
138	Depth-related changes to density, diversity and structure of benthic megafaunal assemblages in the Fimbul ice shelf region, Weddell Sea, Antarctica. Polar Biology, 2007, 30, 1579-1592.	0.5	28
139	Vailulu'u Seamount, Samoa: Life and death on an active submarine volcano. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 6448-6453.	3.3	81
140	Effects of physical disturbance on the cold-water megafaunal communities of the Faroe–Shetland Channel. Marine Ecology - Progress Series, 2006, 319, 43-54.	0.9	58
141	A review of the uses of work-class ROVs for the benefits of science: Lessons learned from the SERPENT project. Underwater Technology, 2005, 26, 83-88.	0.3	20
142	Deep water observations of Lophius piscatorius in the north-eastern Atlantic Ocean by means of a remotely operated vehicle. Journal of Fish Biology, 2004, 65, 947-960.	0.7	27
143	Report on the Managing Impacts of Deep-seA reSource exploitation (MIDAS) workshop on environmental management of deep-sea mining. Research Ideas and Outcomes, 0, 2, e10292.	1.0	10
144	The London Workshop on the Biogeography and Connectivity of the Clarion-Clipperton Zone. Research Ideas and Outcomes, 0, 2, .	1.0	9

#	Article	IF	CITATIONS
145	Short-Term Response of Deep-Water Benthic Megafauna to Installation of a Pipeline Over a Depth Gradient on the Angolan Slope. Frontiers in Marine Science, 0, 9, .	1.2	3