
Renata Bura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10444092/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hydrocarbon Bio-Jet Fuel from Bioconversion of Poplar Biomass: Life Cycle Assessment of Site-Specific Impacts. Forests, 2022, 13, 549.	2.1	1
2	Lignocellulosic nanomaterials production from wheat straw via peracetic acid pretreatment and their application in plastic composites. Carbohydrate Polymers, 2022, 295, 119857.	10.2	10
3	Novel ethanol production using biomass preprocessing to increase ethanol yield and reduce overall costs. Biotechnology for Biofuels, 2021, 14, 9.	6.2	18
4	Techno-Economic Analysis of Producing Glacial Acetic Acid from Poplar Biomass via Bioconversion. Molecules, 2020, 25, 4328.	3.8	20
5	Production routes to bio-acetic acid: life cycle assessment. Biotechnology for Biofuels, 2020, 13, 154.	6.2	31
6	Integration of wastewater treatment into process design of lignocellulosic biorefineries for improved economic viability. Biotechnology for Biofuels, 2020, 13, 24.	6.2	22
7	Blending short rotation coppice poplar with wheat straw as a biorefinery feedstock in the State of Washington. Industrial Crops and Products, 2019, 132, 407-412.	5.2	8
8	Bridging the gap between feedstock growers and users: the study of a coppice poplar-based biorefinery. Biotechnology for Biofuels, 2018, 11, 77.	6.2	9
9	Removal of non-structural components from poplar whole-tree chips to enhance hydrolysis and fermentation performance. Biotechnology for Biofuels, 2018, 11, 222.	6.2	16
10	Fast Pyrolysis of Short Rotation Coppice Poplar: An Investigation in Thermochemical Conversion of a Realistic Feedstock for the Biorefinery. ACS Sustainable Chemistry and Engineering, 2017, 5, 6746-6755.	6.7	15
11	Can we use short rotation coppice poplar for sugar based biorefinery feedstock? Bioconversion of 2-year-old poplar grown as short rotation coppice. Biotechnology for Biofuels, 2017, 10, 144.	6.2	29
12	Hydrocarbon bio-jet fuel from bioconversion of poplar biomass: life cycle assessment. Biotechnology for Biofuels, 2016, 9, 170.	6.2	52
13	Handling heterogeneous hybrid poplar particle sizes for sugar production. Biomass and Bioenergy, 2016, 91, 126-133.	5.7	3
14	Enhanced Xylitol and Ethanol Yields by Fermentation Inhibitors in Steam-Pretreated Lignocellulosic Biomass. Industrial Biotechnology, 2016, 12, 187-194.	0.8	11
15	A New Approach to Using Dried Hybrid Poplar as a Potential Commodity Feedstock for Sugar Production. ACS Sustainable Chemistry and Engineering, 2016, 4, 4378-4384.	6.7	2
16	Hydrocarbon bio-jet fuel from bioconversion of poplar biomass: techno-economic assessment. Biotechnology for Biofuels, 2016, 9, 141.	6.2	54
17	Kinetic modeling of Moorella thermoacetica growth on single and dual-substrate systems. Bioprocess and Biosystems Engineering, 2016, 39, 1567-1575.	3.4	5
18	Fermentation of lignocellulosic sugars to acetic acid by <i>Moorella thermoacetica</i> . Journal of Industrial Microbiology and Biotechnology, 2016, 43, 807-816.	3.0	49

Renata Bura

#	Article	IF	CITATIONS
19	Post-treatment mechanical refining as a method to improve overall sugar recovery of steam pretreated hybrid poplar. Bioresource Technology, 2016, 207, 157-165.	9.6	18
20	Synergistic effects of mixing hybrid poplar and wheat straw biomass for bioconversion processes. Biotechnology for Biofuels, 2015, 8, 226.	6.2	24
21	Ethanologens vs. acetogens: Environmental impacts of two ethanol fermentation pathways. Biomass and Bioenergy, 2015, 83, 23-31.	5.7	22
22	Use of Raman spectroscopy for continuous monitoring and control of lignocellulosic biorefinery processes. Pure and Applied Chemistry, 2014, 86, 867-879.	1.9	9
23	Real-time understanding of lignocellulosic bioethanol fermentation by Raman spectroscopy. Biotechnology for Biofuels, 2013, 6, 28.	6.2	27
24	Novel endophytic yeast <i>Rhodotorula mucilaginosa</i> strain PTD3 II: production of xylitol and ethanol in the presence of inhibitors. Journal of Industrial Microbiology and Biotechnology, 2012, 39, 1453-1463.	3.0	15
25	Novel endophytic yeast <i>Rhodotorula mucilaginosa</i> strain PTD3 I: production of xylitol and ethanol. Journal of Industrial Microbiology and Biotechnology, 2012, 39, 1003-1011.	3.0	29
26	Converting lignocellulosic solid waste into ethanol for the State of Washington: An investigation of treatment technologies and environmental impacts. Bioresource Technology, 2012, 104, 400-409.	9.6	61
27	Assessment of Arundo donax (giant reed) as feedstock for conversion to ethanol. Tappi Journal, 2012, 11, 59-66.	0.5	11
28	The sulfite mill as a sugar-flexible future biorefinery. Tappi Journal, 2012, 11, 27-35.	0.5	4
29	The effect of biomass moisture content on bioethanol yields from steam pretreated switchgrass and sugarcane bagasse. Bioresource Technology, 2011, 102, 2651-2658.	9.6	73
30	Influence of xylan on the enzymatic hydrolysis of steamâ€pretreated corn stover and hybrid poplar. Biotechnology Progress, 2009, 25, 315-322.	2.6	153
31	Acid-catalyzed steam pretreatment of lodgepole pine and subsequent enzymatic hydrolysis and fermentation to ethanol. Biotechnology and Bioengineering, 2007, 98, 737-746.	3.3	146
32	Effect of hemicellulose and lignin removal on enzymatic hydrolysis of steam pretreated corn stover. Bioresource Technology, 2007, 98, 2503-2510.	9.6	474
33	Evaluation of Cellulase Preparations for Hydrolysis of Hardwood Substrates. Applied Biochemistry and Biotechnology, 2006, 130, 528-545.	2.9	62
34	A rapid microassay to evaluate enzymatic hydrolysis of lignocellulosic substrates. Biotechnology and Bioengineering, 2006, 93, 880-886.	3.3	62
35	Evaluation of Cellulase Preparations for Hydrolysis of Hardwood Substrates. , 2006, , 528-545.		2
36	Evaluation of novel fungal cellulase preparations for ability to hydrolyze softwood substrates – evidence for the role of accessory enzymes. Enzyme and Microbial Technology, 2005, 37, 175-184.	3.2	184

Renata Bura

#	Article	IF	CITATIONS
37	Weak Lignin-Binding Enzymes: A Novel Approach to Improve Activity of Cellulases for Hydrolysis of Lignocellulosics. Applied Biochemistry and Biotechnology, 2005, 121, 0163-0170.	2.9	222
38	Enzymatic Hydrolysis of Steam-Exploded and Ethanol Organosolv–Pretreated Douglas-Firby Novel and Commercial Fungal Cellulases. Applied Biochemistry and Biotechnology, 2005, 121, 0219-0230.	2.9	47
39	Optimization of SO ₂ -Catalyzed Steam Pretreatment of Corn Fiber for Ethanol Production. Applied Biochemistry and Biotechnology, 2003, 106, 319-336.	2.9	49
40	SO ₂ -Catalyzed Steam Explosion of Corn Fiber for Ethanol Production. Applied Biochemistry and Biotechnology, 2002, 98-100, 59-72.	2.9	84
41	SO2-catalyzed steam explosion of corn fiber for ethanol production. Applied Biochemistry and Biotechnology, 2002, 98-100, 59-72.	2.9	3