Marcos Fabio Gadelha Rocha

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10442324/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Collateral consequences of agricultural fungicides on pathogenic yeasts: A One Health perspective to tackle azole resistance. Mycoses, 2022, 65, 303-311.	4.0	18
2	Inhibitory effect of proteinase K against dermatophyte biofilms: an alternative for increasing theÂantifungal effects of terbinafine and griseofulvin. Biofouling, 2022, 38, 286-297.	2.2	4
3	Biofilm formation on cat claws by Sporothrix species: An ex vivo model. Microbial Pathogenesis, 2021, 150, 104670.	2.9	11
4	Essential oils encapsulated in chitosan microparticles against Candida albicans biofilms. International Journal of Biological Macromolecules, 2021, 166, 621-632.	7.5	30
5	Antifungal activity of deferiprone and EDTA against <i>Sporothrix</i> spp.: Effect on planktonic growth and biofilm formation. Medical Mycology, 2021, 59, 537-544.	0.7	1
6	Antifungal effect of anthraquinones against <i>Cryptococcus neoformans</i> : detection of synergism with amphotericin B. Medical Mycology, 2021, 59, 564-570.	0.7	8
7	Yeast microbiota of free-ranging amphibians and reptiles from Caatinga biome in Ceará State, Northeast Brazil: High pathogenic potential of Candida famata. Ciencia Rural, 2021, 51, .	0.5	1
8	Vancomycin enhances growth and virulence of Trichosporon spp. planktonic cells and biofilms. Medical Mycology, 2021, 59, 793-801.	0.7	1
9	Atypical chlamydoconidium-producing Trichophyton tonsurans strains from CearÃ _i State, Northeast Brazil: investigation of taxonomy by phylogenetic analysis and biofilm susceptibility. Microbiology (United Kingdom), 2021, 167, .	1.8	2
10	Azole-Resilient Biofilms and Non-wild Type C. albicans Among Candida Species Isolated from Agricultural Soils Cultivated with Azole Fungicides: an Environmental Issue?. Microbial Ecology, 2021, 82, 1080-1083.	2.8	4
11	Trichosporon asahii and Trichosporon inkin Biofilms Produce Antifungal-Tolerant Persister Cells. Frontiers in Cellular and Infection Microbiology, 2021, 11, 645812.	3.9	7
12	Inhibitory effect of Brazilian red propolis on planktonic and biofilm forms of Clostridioides difficile. Anaerobe, 2021, 69, 102322.	2.1	6
13	Anthraquinones from <i>Aloe</i> spp. inhibit <i>Cryptococcus neoformans sensu stricto</i> : effects against growing and mature biofilms. Biofouling, 2021, 37, 809-817.	2.2	1
14	Antifungal activity of different molecular weight chitosans against planktonic cells and biofilm of Sporothrix brasiliensis. International Journal of Biological Macromolecules, 2020, 143, 341-348.	7.5	23
15	Exogenous fungal quorum sensing molecules inhibit planktonic cell growth and modulate filamentation and biofilm formation in the <i>Sporothrix schenckii</i> complex. Biofouling, 2020, 36, 909-921.	2.2	7
16	<i>In vitro</i> and <i>ex vivo</i> biofilms of dermatophytes: a new panorama for the study of antifungal drugs. Biofouling, 2020, 36, 783-791.	2.2	18
17	Mini-review: from <i>inÂvitro</i> to <i>ex vivo</i> studies: an overview of alternative methods for the study of medical biofilms. Biofouling, 2020, 36, 1-21.	2.2	13
18	Diclofenac exhibits synergism with azoles against planktonic cells and biofilms of <i>Candida tropicalis</i> . Biofouling, 2020, 36, 528-536.	2.2	6

#	Article	IF	CITATIONS
19	Proposal for a microcosm biofilm model for the study of vulvovaginal candidiasis. Biofouling, 2020, 36, 610-620.	2.2	4
20	Azole resistance in Candida from animals calls for the One Health approach to tackle the emergence of antimicrobial resistance. Medical Mycology, 2020, 58, 896-905.	0.7	11
21	The yeast, the antifungal, and the wardrobe: a journey into antifungal resistance mechanisms of <i>Candida tropicalis</i> . Canadian Journal of Microbiology, 2020, 66, 377-388.	1.7	15
22	In vitro inhibitory effect of statins on planktonic cells and biofilms of the Sporothrix schenckii species complex. Journal of Medical Microbiology, 2020, 69, 838-843.	1.8	3
23	Darunavir inhibits Cryptococcus neoformans/Cryptococcus gattii species complex growth and increases the susceptibility of biofilms to antifungal drugs. Journal of Medical Microbiology, 2020, 69, 830-837.	1.8	4
24	Farnesol inhibits planktonic cells and antifungal-tolerant biofilms of Trichosporon asahii and Trichosporon inkin. Medical Mycology, 2019, 57, 1038-1045.	0.7	17
25	<i>Ex vivo</i> biofilm-forming ability of dermatophytes using dog and cat hair: an ethically viable approach for an infection model. Biofouling, 2019, 35, 392-400.	2.2	17
26	Antifungal effects of the flavonoids kaempferol and quercetin: a possible alternative for the control of fungal biofilms. Biofouling, 2019, 35, 320-328.	2.2	73
27	Sodium butyrate inhibits planktonic cells and biofilms of Trichosporon spp Microbial Pathogenesis, 2019, 130, 219-225.	2.9	15
28	Exposure of Candida parapsilosis complex to agricultural azoles: An overview of the role of environmental determinants for the development of resistance. Science of the Total Environment, 2019, 650, 1231-1238.	8.0	18
29	Potassium iodide and miltefosine inhibit biofilms of Sporothrix schenckii species complex in yeast and filamentous forms. Medical Mycology, 2019, 57, 764-772.	0.7	19
30	In vitro effects of promethazine on cell morphology and structure and mitochondrial activity of azole-resistant Candida tropicalis. Medical Mycology, 2018, 56, 1012-1022.	0.7	7
31	Effect of the molecular weight of chitosan on its antifungal activity against Candida spp. in planktonic cells and biofilm. Carbohydrate Polymers, 2018, 195, 662-669.	10.2	54
32	A proposal for antifungal epidemiological cut-off values against Histoplasma capsulatum var. capsulatum based on the susceptibility of isolates from HIV-infected patients with disseminated histoplasmosis in Northeast Brazil. International Journal of Antimicrobial Agents, 2018, 52, 272-277.	2.5	6
33	Inhibitory effect of a lipopeptide biosurfactant produced by <i>Bacillus subtilis</i> on planktonic and sessile cells of <i>Trichosporon</i> spp Biofouling, 2018, 34, 309-319.	2.2	16
34	Antifungal susceptibility of Sporothrix schenckii complex biofilms. Medical Mycology, 2018, 56, 297-306.	0.7	32
35	Malassezia pachydermatis from animals: Planktonic and biofilm antifungal susceptibility and its virulence arsenal. Veterinary Microbiology, 2018, 220, 47-52.	1.9	29
36	Antifungal susceptibility and virulence of Candida parapsilosis species complex: an overview of their pathogenic potential. Journal of Medical Microbiology, 2018, 67, 903-914.	1.8	19

#	Article	IF	CITATIONS
37	Biofilms of <i>Candida</i> spp. from the ocular conjunctiva of horses with reduced azole susceptibility: a complicating factor for the treatment of keratomycosis?. Veterinary Ophthalmology, 2017, 20, 539-546.	1.0	13
38	Azole resistance in <i>Candida albicans</i> from animals: Highlights on efflux pump activity and gene overexpression. Mycoses, 2017, 60, 462-468.	4.0	28
39	The HIV aspartyl protease inhibitor ritonavir impairs planktonic growth, biofilm formation and proteolytic activity in <i>Trichosporon</i> spp Biofouling, 2017, 33, 640-650.	2.2	18
40	Research advances on the multiple uses of Moringa oleifera : A sustainable alternative for socially neglected population. Asian Pacific Journal of Tropical Medicine, 2017, 10, 621-630.	0.8	115
41	Candida parapsilosis complex in veterinary practice: A historical overview, biology, virulence attributes and antifungal susceptibility traits. Veterinary Microbiology, 2017, 212, 22-30.	1.9	14
42	Combination of Phenotypic Tests as a Screening Approach for the Differentiation of Cryptic Species Candida albicans and Candida dubliniensis. Medical Mycology: Open Access, 2017, 03, .	0.3	2
43	Yeasts from Scarlet ibises (Eudocimus ruber): A focus on monitoring the antifungal susceptibility of Candida famata and closely related species. Medical Mycology, 2017, 55, 725-732.	0.7	9
44	Quantitative and structural analyses of the in vitro and ex vivo biofilm-forming ability of dermatophytes. Journal of Medical Microbiology, 2017, 66, 1045-1052.	1.8	34
45	Effect of essential oils from Mangifera indica L. cultivars on the antifungal susceptibility of Candida spp. strains isolated from dogs. Revista Brasileira De Saude E Producao Animal, 2017, 18, 337-346.	0.3	3
46	Crossâ€resistance to fluconazole induced by exposure to the agricultural azole tetraconazole: an environmental resistance school?. Mycoses, 2016, 59, 281-290.	4.0	28
47	Coccidioidomycosis and Histoplasmosis in Equines: An Overview to Support the Accurate Diagnosis. Journal of Equine Veterinary Science, 2016, 40, 62-73.	0.9	Ο
48	Candida tropicalis from veterinary and human sources shows similar in vitro hemolytic activity, antifungal biofilm susceptibility and pathogenesis against Caenorhabditis elegans. Veterinary Microbiology, 2016, 192, 213-219.	1.9	25
49	Terpinen-4-ol, tyrosol, and β-lapachone as potential antifungals against dimorphic fungi. Brazilian Journal of Microbiology, 2016, 47, 917-924.	2.0	40
50	Synthesis and inÂvitro antifungal activity of isoniazid-derived hydrazones against Coccidioides posadasii. Microbial Pathogenesis, 2016, 98, 1-5.	2.9	8
51	Antiretroviral drugs saquinavir and ritonavir reduce inhibitory concentration values of itraconazole against Histoplasma capsulatum strains in vitro. Brazilian Journal of Infectious Diseases, 2016, 20, 155-159.	0.6	9
52	Chemical composition, antioxidant, antifungal and hemolytic activities of essential oil from Baccharis trinervis (Lam.) Pers. (Asteraceae). Industrial Crops and Products, 2016, 84, 108-115.	5.2	45
53	Antifungal Resistance and Virulence Among Candida spp. from Captive Amazonian manatees and West Indian Manatees: Potential Impacts on Animal and Environmental Health. EcoHealth, 2016, 13, 328-338.	2.0	15
54	<i>In vitro</i> susceptibility of antifungal drugs against <i>Sporothrix brasiliensis</i> recovered from cats with sporotrichosis in Brazil: Table 1 Medical Mycology, 2016, 54, 275-279.	0.7	32

#	Article	IF	CITATIONS
55	Trends in antifungal susceptibility and virulence of <i>Candida</i> spp. from the nasolacrimal duct of horses. Medical Mycology, 2016, 54, 147-154.	0.7	15
56	In vitro inhibitory activity of terpenic derivatives against clinical and environmental strains of the Sporothrix schenkii complex. Medical Mycology, 2015, 53, 93-98.	0.7	16
57	Candida tropicalis isolates obtained from veterinary sources show resistance to azoles and produce virulence factors. Medical Mycology, 2015, 53, 145-152.	0.7	51
58	Histoplasma capsulatum in planktonic and biofilm forms: in vitro susceptibility to amphotericin B, itraconazole and farnesol. Journal of Medical Microbiology, 2015, 64, 394-399.	1.8	30
59	Inhibitory activity of isoniazid and ethionamide against Cryptococcus biofilms. Canadian Journal of Microbiology, 2015, 61, 827-836.	1.7	4
60	Evidence of Fluconazole-Resistant Candida Species in Tortoises and Sea Turtles. Mycopathologia, 2015, 180, 421-426.	3.1	18
61	Vibrio spp. from Macrobrachium amazonicum prawn farming are inhibited by Moringa oleifera extracts. Asian Pacific Journal of Tropical Medicine, 2015, 8, 919-922.	0.8	18
62	Simvastatin inhibits planktonic cells and biofilms of Candida and Cryptococcus species. Brazilian Journal of Infectious Diseases, 2015, 19, 459-465.	0.6	28
63	Trichosporon inkin biofilms produce extracellular proteases and exhibit resistance to antifungals. Journal of Medical Microbiology, 2015, 64, 1277-1286.	1.8	30
64	Moringa oleifera inhibits growth of Candida spp. and Hortaea werneckii isolated from Macrobrachium amazonicum prawn farming with a wide margin of safety. Ciencia Rural, 2014, 44, 2197-2203.	0.5	10
65	Synthesis and Antifungal Activity <i>In Vitro</i> of Isoniazid Derivatives against Histoplasma capsulatum var. capsulatum. Antimicrobial Agents and Chemotherapy, 2014, 58, 2504-2511.	3.2	16
66	The calcineurin inhibitor cyclosporin A exhibits synergism with antifungals against Candida parapsilosis species complex. Journal of Medical Microbiology, 2014, 63, 936-944.	1.8	31
67	Antifungal susceptibility and virulence attributes of animal-derived isolates of Candida parapsilosis complex. Journal of Medical Microbiology, 2014, 63, 1568-1572.	1.8	16
68	In vitro inhibitory effect of miltefosine against strains of Histoplasma capsulatum var. capsulatum and Sporothrix spp Medical Mycology, 2014, 52, 320-325.	0.7	33
69	Antigens of Coccidioides posadasii as an Important Tool for the Immunodiagnosis of Coccidioidomycosis. Mycopathologia, 2013, 175, 25-32.	3.1	8
70	Detection of Candida species resistant to azoles in the microbiota of rheas (Rhea americana): possible implications for human and animal health. Journal of Medical Microbiology, 2013, 62, 889-895.	1.8	36
71	<i>Trichophyton tonsurans</i> strains from Brazil: phenotypic heterogeneity, genetic homology, and detection of virulence genes. Canadian Journal of Microbiology, 2013, 59, 754-760.	1.7	11
72	Effect of Farnesol on Growth, Ergosterol Biosynthesis, and Cell Permeability in Coccidioides posadasii. Antimicrobial Agents and Chemotherapy, 2013, 57, 2167-2170.	3.2	25

#	Article	IF	CITATIONS
73	Species of <i>Candida</i> as a component of the nasal microbiota of healthy horses. Medical Mycology, 2013, 51, 731-736.	0.7	22
74	Genetic diversity of <i>Coccidioides posadasii</i> from Brazil. Medical Mycology, 2013, 51, 432-437.	0.7	8
75	Farnesol inhibits in vitro growth of the Cryptococcus neoformans species complex with no significant changes in virulence-related exoenzymes. Veterinary Microbiology, 2012, 159, 375-380.	1.9	28
76	Coccidioidomycosis in armadillo hunters from the state of CearÃ _i , Brazil. Memorias Do Instituto Oswaldo Cruz, 2012, 107, 813-815.	1.6	18
77	<i>Coccidioides posadasii</i> Infection in Bats, Brazil. Emerging Infectious Diseases, 2012, 18, 668-70.	4.3	37
78	Biochemical Characterization of an In-House Coccidioides Antigen: Perspectives for the Immunodiagnosis of Coccidioidomycosis. Molecules, 2012, 17, 7854-7863.	3.8	3
79	Feline Histoplasmosis in Brazil: Clinical and Laboratory Aspects and a Comparative Approach of Published Reports. Mycopathologia, 2012, 173, 193-197.	3.1	12
80	Cotrimoxazole enhances the in vitro susceptibility of Coccidioides posadasii to antifungals. Memorias Do Instituto Oswaldo Cruz, 2011, 106, 1045-1048.	1.6	6
81	Extratos de Moringa oleifera e Vernonia sp. sobre Candida albicans e Microsporum canis isolados de cães e gatos e análise da toxicidade em Artemia sp Ciencia Rural, 2011, 41, 1807-1812.	0.5	10
82	PCR-REA as an important tool for the identification of Cryptococcus neoformans and Cryptococcus gattii from human and veterinary sources. Veterinary Microbiology, 2011, 154, 180-184.	1.9	6
83	Synergistic Effect of Antituberculosis Drugs and AzolesIn Vitroagainst Histoplasma capsulatum var. capsulatum. Antimicrobial Agents and Chemotherapy, 2011, 55, 4482-4484.	3.2	6
84	Candida species isolated from the gastrointestinal tract of cockatiels (Nymphicus hollandicus): In vitro antifungal susceptibility profile and phospholipase activity. Veterinary Microbiology, 2010, 145, 324-328.	1.9	44
85	<i>In Vitro</i> Effect of Sulfamethoxazole-Trimethoprim against <i>Histoplasma capsulatum</i> var. capsulatum. Antimicrobial Agents and Chemotherapy, 2010, 54, 3978-3979.	3.2	23
86	Molecular methods for the diagnosis and characterization ofCryptococcus: a review. Canadian Journal of Microbiology, 2010, 56, 445-458.	1.7	46
87	Twelve years of coccidioidomycosis in CearÃ; State, Northeast Brazil: epidemiologic and diagnostic aspects. Diagnostic Microbiology and Infectious Disease, 2010, 66, 65-72.	1.8	33
88	The effects of the fungus Metarhizium anisopliae var. acridum on different stages of Lutzomyia longipalpis (Diptera: Psychodidae). Acta Tropica, 2010, 113, 214-220.	2.0	15
89	Chemical composition, toxicity and larvicidal and antifungal activities of Persea americana (avocado) seed extracts. Revista Da Sociedade Brasileira De Medicina Tropical, 2009, 42, 110-113.	0.9	88
90	Serologic Detection of Coccidioidomycosis Antibodies in Northeast Brazil. Mycopathologia, 2009, 167, 187-190.	3.1	10

#	Article	IF	CITATIONS
91	In vitro synergistic effects of antituberculous drugs plus antifungals against Coccidioides posadasii. International Journal of Antimicrobial Agents, 2009, 34, 278-280.	2.5	10
92	Fatores relacionados com a positividade de cães para leishmaniose visceral em área endêmica do Estado do Rio Grande do Norte, Brasil. Ciencia Rural, 2006, 36, 1854-1859.	0.5	31
93	Candidemia in a Brazilian hospital: the importance of Candida parapsilosis. Revista Do Instituto De Medicina Tropical De Sao Paulo, 2006, 48, 17-20.	1.1	52
94	In vitro inhibitory effect of antituberculosis drugs on clinical and environmental strains of Coccidioides posadasii. Journal of Antimicrobial Chemotherapy, 2006, 58, 575-579.	3.0	9