Samar Mansour

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10441213/publications.pdf

Version: 2024-02-01

201674 276875 2,693 41 27 41 citations h-index g-index papers 41 41 41 3157 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	The other side to the use of active targeting ligands; the case of folic acid in the targeting of breast cancer. Colloids and Surfaces B: Biointerfaces, 2022, 211, 112289.	5.0	8
2	Different Serum, Different Protein Corona! The Impact of the Serum Source on Cellular Targeting of Folic Acid-Modified Chitosan-Based Nanoparticles. Molecular Pharmaceutics, 2022, 19, 1635-1646.	4.6	4
3	Enhanced anti-bacterial effect of kojic acid using gelatinized core liposomes: A potential approach to combat antibiotic resistance. Journal of Drug Delivery Science and Technology, 2021, 64, 102625.	3.0	8
4	Gamma sterilization and in vivo evaluation of cationic nanostructured lipid carriers as potential ocular delivery systems for antiglaucoma drugs. European Journal of Pharmaceutical Sciences, 2021, 163, 105887.	4.0	18
5	Delivery of trans-membrane proteins by liposomes; the effect of liposome size and formulation technique on the efficiency of protein delivery. International Journal of Pharmaceutics, 2021, 606, 120879.	5. 2	10
6	Liposomal delivery of functional transmembrane ion channels into the cell membranes of target cells; a potential approach for the treatment of channelopathies. International Journal of Biological Macromolecules, 2020, 153, 1080-1089.	7.5	8
7	Targeting Activated Hepatic Stellate Cells Using Collagen-Binding Chitosan Nanoparticles for siRNA Delivery to Fibrotic Livers. Pharmaceutics, 2020, 12, 590.	4.5	21
8	Collagenase loaded chitosan nanoparticles for digestion of the collagenous scar in liver fibrosis: The effect of chitosan intrinsic collagen binding on the success of targeting. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 148, 54-66.	4.3	18
9	Tailoring novel soft nano-vesicles â€~Flexosomes' for enhanced transdermal drug delivery: Optimization, characterization and comprehensive ex vivo – in vivo evaluation. International Journal of Pharmaceutics, 2019, 560, 101-115.	5.2	26
10	Prevention of hepatic stellate cell activation using JQ1- and atorvastatin-loaded chitosan nanoparticles as a promising approach in therapy of liver fibrosis. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 134, 96-106.	4.3	39
11	Novel technique of insulin loading into porous carriers for oral delivery. Asian Journal of Pharmaceutical Sciences, 2018, 13, 297-309.	9.1	11
12	Exploring gelatin nanoparticles as novel nanocarriers for Timolol Maleate: Augmented in-vivo efficacy and safe histological profile. International Journal of Pharmaceutics, 2018, 545, 229-239.	5.2	62
13	A Tailored Thermosensitive PLGA-PEG-PLGA/Emulsomes Composite for Enhanced Oxcarbazepine Brain Delivery via the Nasal Route. Pharmaceutics, 2018, 10, 217.	4.5	35
14	In Vitro transdermal delivery of sesamol using oleic acid chemically-modified gelatin nanoparticles as a potential breast cancer medication. Journal of Drug Delivery Science and Technology, 2018, 48, 30-39.	3.0	51
15	Examining Insulin Adsorption onto Mesoporous Silica Microparticles for Oral Delivery. Current Drug Delivery, 2018, 15, 541-553.	1.6	1
16	Nanoethosomes for transdermal delivery of tropisetron HCl: multi-factorial predictive modeling, characterization, and <i>ex vivo</i> skin permeation. Drug Development and Industrial Pharmacy, 2017, 43, 958-971.	2.0	35
17	Surface functionalization of methotrexate-loaded chitosan nanoparticles with hyaluronic acid/human serum albumin: Comparative characterization and in vitro cytotoxicity. International Journal of Pharmaceutics, 2017, 522, 128-136.	5.2	29
18	Studying the effect of physicallyâ€adsorbed coating polymers on the cytotoxic activity of optimized bisdemethoxycurcumin loadedâ€PLGA nanoparticles. Journal of Biomedical Materials Research - Part A, 2017, 105, 1433-1445.	4.0	51

#	Article	IF	Citations
19	Optimizing novel penetration enhancing hybridized vesicles for augmenting the <i>in-vivo</i> effect of an anti-glaucoma drug. Drug Delivery, 2017, 24, 99-108.	5.7	57
20	A novel serum-stable liver targeted cytotoxic system using valerate-conjugated chitosan nanoparticles surface decorated with glycyrrhizin. International Journal of Pharmaceutics, 2017, 525, 123-138.	5.2	39
21	Intranasally administered in situ gelling nanocomposite system of dimenhydrinate: preparation, characterization and pharmacodynamic applicability in chemotherapy induced emesis model. Scientific Reports, 2017, 7, 9910.	3.3	40
22	Composite chitosan-transfersomal vesicles for improved transnasal permeation and bioavailability of verapamil. International Journal of Biological Macromolecules, 2016, 93, 591-599.	7.5	52
23	Methotrexate loading in chitosan nanoparticles at a novel pH: Response surface modeling, optimization and characterization. International Journal of Biological Macromolecules, 2016, 91, 630-639.	7.5	37
24	Chitosan-tripolyphosphate nanoparticles: Optimization of formulation parameters for improving process yield at a novel pH using artificial neural networks. International Journal of Biological Macromolecules, 2016, 86, 50-58.	7.5	96
25	Exploring the use of nanocarrier systems to deliver the magical molecule; Curcumin and its derivatives. Journal of Controlled Release, 2016, 225, 1-30.	9.9	155
26	Identifying lipidic emulsomes for improved oxcarbazepine brain targeting: In vitro and rat in vivo studies. International Journal of Pharmaceutics, 2016, 503, 127-140.	5.2	59
27	Bisdemethoxycurcumin loaded polymeric mixed micelles as potential anti-cancer remedy: Preparation, optimization and cytotoxic evaluation in a HepG-2 cell model. Journal of Molecular Liquids, 2016, 214, 162-170.	4.9	50
28	Bioavailability enhancement of verapamil HCl via intranasal chitosan microspheres. European Journal of Pharmaceutical Sciences, 2014, 51, 59-66.	4.0	66
29	Hydrophilic versus hydrophobic porogens for engineering of poly(lactide-co-glycolide) microparticles containing risedronate sodium. Pharmaceutical Development and Technology, 2013, 18, 1078-1088.	2.4	15
30	Design of cationic nanostructured heterolipid matrices for ocular delivery of methazolamide. International Journal of Nanomedicine, 2012, 7, 2483.	6.7	33
31	Different modalities of NaCl osmogen in biodegradable microspheres for bone deposition of risedronate sodium by alveolar targeting. European Journal of Pharmaceutics and Biopharmaceutics, 2011, 79, 601-611.	4.3	38
32	A Reliable Predictive Factorial Model for Entrapment Optimization of a Sodium Bisphosphonate into Biodegradable Microspheres. Journal of Pharmaceutical Sciences, 2011, 100, 612-621.	3.3	22
33	Visualization, dermatopharmacokinetic analysis and monitoring the conformational effects of a microemulsion formulation in the skin stratum corneum. Journal of Colloid and Interface Science, 2011, 354, 124-130.	9.4	50
34	Microemulsion formulations for the transdermal delivery of testosterone. European Journal of Pharmaceutical Sciences, 2010, 40, 188-196.	4.0	144
35	Uptake of Microemulsion Components into the Stratum Corneum and Their Molecular Effects on Skin Barrier Function. Molecular Pharmaceutics, 2010, 7, 1266-1273.	4.6	86
36	Lipospheres as Carriers for Topical Delivery of Aceclofenac: Preparation, Characterization and In Vivo Evaluation. AAPS PharmSciTech, 2008, 9, 154-162.	3.3	89

SAMAR MANSOUR

#	Article	IF	CITATIONS
37	Release Mechanisms Behind Polysaccharides-Based Famotidine Controlled Release Matrix Tablets. AAPS PharmSciTech, 2008, 9, 1230-1239.	3.3	23
38	Vesicular aceclofenac systems: A comparative study between liposomes and niosomes. Journal of Microencapsulation, 2008, 25, 499-512.	2.8	179
39	Liposomes as an ocular delivery system for acetazolamide: In vitro and in vivo studies. AAPS PharmSciTech, 2007, 8, E1-E12.	3.3	252
40	AAPS PharmSciTech volume 8, issue 4 — Editorial. AAPS PharmSciTech, 2007, 8, 1-1.	3.3	394
41	Preparation and evaluation of reverse-phase evaporation and multilamellar niosomes as ophthalmic carriers of acetazolamide. International Journal of Pharmaceutics, 2005, 306, 71-82.	5.2	282