Bao-xing Shen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1044110/publications.pdf

Version: 2024-02-01

31	962	17 h-index	31
papers	citations		g-index
31	31	31	810 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Recent progress in the development of fluorescent probes for detection of biothiols. Dyes and Pigments, 2020, 177, 108321.	3.7	130
2	A minireview of viscosity-sensitive fluorescent probes: design and biological applications. Journal of Materials Chemistry B, 2020, 8, 9642-9651.	5.8	117
3	Recent development of synthetic probes for detection of hypochlorous acid/hypochlorite. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 240, 118545.	3.9	82
4	Near-infrared BODIPY-based two-photon ClO ^{â^'} probe based on thiosemicarbazide desulfurization reaction: naked-eye detection and mitochondrial imaging. Journal of Materials Chemistry B, 2017, 5, 5854-5861.	5.8	79
5	Building Rhodamine-BODIPY fluorescent platform using Click reaction: Naked-eye visible and multi-channel chemodosimeter for detection of Fe3+ and Hg2+. Sensors and Actuators B: Chemical, 2018, 260, 666-675.	7.8	57
6	A novel triphenylamine-BODIPY dendron: click synthesis, near-infrared emission and a multi-channel chemodosimeter for Hg ²⁺ and Fe ³⁺ . Journal of Materials Chemistry B, 2016, 4, 7549-7559.	5.8	49
7	Click synthesis, Hg 2+ sensor and Intramolecular fluorescence resonance energy transfer in novel BODIPY dendrons. Sensors and Actuators B: Chemical, 2017, 239, 226-234.	7.8	48
8	Construction of a red emission BODIPY-based probe for tracing lysosomal viscosity changes in culture cells. Sensors and Actuators B: Chemical, 2020, 304, 127271.	7.8	47
9	Detection of Carboxylesterase 1 and Chlorpyrifos with ZIF-8 Metal–Organic Frameworks Using a Red Emission BODIPY-Based Probe. ACS Applied Materials & Interfaces, 2021, 13, 8718-8726.	8.0	32
10	Synthesis of a BODIPY disulfonate near-infrared fluorescence-enhanced probe with high selectivity to endogenous glutathione and two-photon fluorescent turn-on through thiol-induced S _N Ar substitution. Journal of Materials Chemistry B, 2018, 6, 3023-3029.	5.8	28
11	A lysosome targeting probe based on fluorescent protein chromophore for selectively detecting GSH and Cys in living cells. Talanta, 2020, 208, 120461.	5.5	25
12	Lysosome targeting metal-organic framework probe LysFP@ZIF-8 for highly sensitive quantification of carboxylesterase 1 and organophosphates in living cells. Journal of Hazardous Materials, 2021, 407, 124342.	12.4	24
13	A novel carbazolyl GFP chromophore analogue: synthesis strategy and acidic pH-activatable lysosomal probe for tracing endogenous viscosity changes. New Journal of Chemistry, 2020, 44, 8823-8832.	2.8	21
14	Construction of a red emission fluorescent protein chromophore-based probe for detection of carboxylesterase 1 and carbamate pesticide in culture cells. Talanta, 2021, 223, 121744.	5.5	20
15	A near infrared BODIPY-based lysosome targeting probe for selectively detection of carboxylesterase 1 in living cells pretreated with pesticides. Sensors and Actuators B: Chemical, 2020, 325, 128798.	7.8	19
16	Detection of protamine and heparin using a promising metal organic frameworks based fluorescent molecular device BZA-BOD@ZIF-90. Sensors and Actuators B: Chemical, 2021, 341, 130006.	7.8	19
17	A Minireview of Recent Reported Carboxylesterase Fluorescent Probes: Design and Biological Applications. ChemistrySelect, 2020, 5, 11185-11196.	1.5	17
18	Recent developments on nanomaterial probes for detection of pesticide residues: A review. Analytica Chimica Acta, 2022, 1215, 339974.	5.4	17

#	Article	IF	CITATIONS
19	Detection of carboxylesterase 1 and carbamates with a novel fluorescent protein chromophore based probe. Dyes and Pigments, 2021, 192, 109444.	3.7	16
20	Detecting the insoluble protein aggregates in live cells using an AIE derivative of fluorescent protein chromophore. Sensors and Actuators B: Chemical, 2022, 353, 131098.	7.8	16
21	Red emission cysteine probe with high selectivity based on fluorescent protein chromophores and turn-on fluorescence in cell cultures. Dyes and Pigments, 2019, 166, 350-356.	3.7	15
22	Fluorogenic toolbox for facile detecting of hydroxyl radicals: From designing principles to diagnostics applications. TrAC - Trends in Analytical Chemistry, 2022, 157, 116734.	11.4	15
23	Near-Infrared Two-Photon Fluorescent Chemodosimeter Based on Rhodamine-BODIPY for Mercury Ion Fluorescence Imaging in Living Cells. ChemistrySelect, 2017, 2, 9970-9976.	1.5	13
24	A chemical biology toolbox to overcome the hypoxic tumor microenvironment for photodynamic therapy: a review. Biomaterials Science, 2022, 10, 4681-4693.	5.4	13
25	Quantitative determination of protamine using a fluorescent protein chromophore-based AIE probe. Tetrahedron, 2021, 90, 132218.	1.9	9
26	A Novel Fluorescent Dye Naphthalene Imide-Fluorine Boron Two Pyrrole: Synthesis, Fluorescence Resonance Energy Transfer and Cell Imaging. Chinese Journal of Organic Chemistry, 2016, 36, 774.	1.3	9
27	Recent advances on the one-pot synthesis to assemble size-controlled glycans and glycoconjugates and polysaccharides. Carbohydrate Polymers, 2021, 258, 117672.	10.2	8
28	A red emission multiple detection site probe for detecting carboxylesterase 1 based on BODIPY fluorophore. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 421, 113516.	3.9	6
29	Fabrication of a zeolite imidazole framework-8-based red emitting nanocomposite for sensitive detection of nitro reductase. Dyes and Pigments, 2022, 202, 110220.	3.7	6
30	Sensitive Detection of Protamine Based on a Yellow Emission Fluorophore. ChemistrySelect, 2021, 6, 9311-9316.	1.5	4
31	¹ H NMR analysis of perdeutero <i>N</i> sulfoheparosan C5-epimerization: a direct way to measure the activity of immobilized C5-epimerase. Journal of Carbohydrate Chemistry, 2020, 39, 437-449.	1.1	1