Dmitry V Zinchenko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1044066/publications.pdf

Version: 2024-02-01

37	578 citations	687220 13 h-index	642610 23 g-index
papers	Citations	II-IIIQEX	g-muex
38 all docs	38 docs citations	38 times ranked	360 citing authors

#	Article	IF	CITATIONS
1	Zinc Modulation of Neuronal Calcium Sensor Proteins: Three Modes of Interaction with Different Structural Outcomes. Biomolecules, 2022, 12, 956.	1.8	6
2	Non-Invasive Diagnostics of Renal Cell Carcinoma Using Ultrasensitive Immunodetection of Cancer-Retina Antigens. Biochemistry (Moscow), 2022, 87, 658-666.	0.7	2
3	Disulfide Dimerization of Neuronal Calcium Sensor-1: Implications for Zinc and Redox Signaling. International Journal of Molecular Sciences, 2021, 22, 12602.	1.8	8
4	A Novel Approach to Bacterial Expression and Purification of Myristoylated Forms of Neuronal Calcium Sensor Proteins. Biomolecules, 2020, 10, 1025.	1.8	5
5	Membrane Binding of Neuronal Calcium Sensor-1: Highly Specific Interaction with Phosphatidylinositol-3-Phosphate. Biomolecules, 2020, 10, 164.	1.8	5
6	Hydrolysates of Soybean Proteins for Starter Feeds of Aquaculture: The Behavior of Proteins upon Fermentolysis and the Compositional Analysis of Hydrolysates. Russian Journal of Bioorganic Chemistry, 2019, 45, 195-203.	0.3	4
7	Effect of the B Subunit of the Cholera Toxin on the Raw 264.7 Murine Macrophage-Like Cell Line. Russian Journal of Bioorganic Chemistry, 2019, 45, 122-128.	0.3	1
8	Intestinal microbiota of salmonids and its changes upon introduction of soy proteins to fish feed. Aquaculture International, 2019, 27, 475-496.	1.1	31
9	Soybean Trypsin Inhibitors: Selective Inactivation at Hydrolysis of Soybean Proteins by Some Enzymatic Complexes. Applied Biochemistry and Microbiology, 2019, 55, 270-276.	0.3	2
10	Hydrolysis of Soybean and Rapeseed Proteins with Enzyme Complex Extracted from the Pyloric Caeca of the Cod. Applied Biochemistry and Microbiology, 2019, 55, 165-172.	0.3	2
11	Autoantibody against arrestin-1 as a potential biomarker of renal cell carcinoma. Biochimie, 2019, 157, 26-37.	1.3	11
12	Photoreceptor calcium sensor proteins in detergent-resistant membrane rafts are regulated via binding to caveolin-1. Cell Calcium, 2018, 73, 55-69.	1.1	17
13	Functional Status of Neuronal Calcium Sensor-1 Is Modulated by Zinc Binding. Frontiers in Molecular Neuroscience, 2018, 11, 459.	1.4	32
14	Soy and Rapeseed Protein Hydrolysis by the Enzyme Preparation Protosubtilin. Applied Biochemistry and Microbiology, 2018, 54, 294-300.	0.3	9
15	Interaction of Cholera Toxin B Subunit with Rat Intestinal Epithelial Cells. Russian Journal of Bioorganic Chemistry, 2018, 44, 403-407.	0.3	3
16	Hydrolysis of Soybean Proteins with Kamchatka Crab Hepatopancreas Enzyme Complex. Applied Biochemistry and Microbiology, 2018, 54, 76-82.	0.3	5
17	Light-Induced Thiol Oxidation of Recoverin Affects Rhodopsin Desensitization. Frontiers in Molecular Neuroscience, 2018, 11, 474.	1.4	11
18	Interleukin-11 binds specific EF-hand proteins via their conserved structural motifs. Journal of Biomolecular Structure and Dynamics, 2017, 35, 78-91.	2.0	31

#	Article	IF	CITATIONS
19	Interaction of cholera toxin B-subunit with human T-lymphocytes. Biochemistry (Moscow), 2017, 82, 1036-1041.	0.7	2
20	Interaction of cholera toxin B subunit with T and B lymphocytes. International Immunopharmacology, 2017, 50, 279-282.	1.7	4
21	Plant protein hydrolysates as fish fry feed in aquaculture. Hydrolysis of rapeseed proteins by an enzyme complex from king crab hepatopancreas. Applied Biochemistry and Microbiology, 2017, 53, 680-687.	0.3	8
22	$\hat{l}\pm 1$ -Thymosin, $\hat{l}\pm 2$ -interferon, and the LKEKK syntetic peptide inhibit the binding of the B subunit of the cholera toxin to intestinal epithelial cell membranes. Russian Journal of Bioorganic Chemistry, 2017, 43, 673-677.	0.3	4
23	Binding of synthetic LKEKK peptide to human T-lymphocytes. Biochemistry (Moscow), 2016, 81, 871-875.	0.7	10
24	The synthetic peptide octarphin activates soluble guanylate cyclase in macrophages. Russian Journal of Bioorganic Chemistry, 2016, 42, 269-271.	0.3	1
25	The LKEKK synthetic peptide as a ligand of rat intestinal epithelial cell membranes. Russian Journal of Bioorganic Chemistry, 2016, 42, 479-483.	0.3	7
26	Regulatory function of the C-terminal segment of guanylate cyclase-activating protein 2. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2015, 1854, 1325-1337.	1.1	11
27	Light-induced disulfide dimerization of recoverin under ex vivo and in vivo conditions. Free Radical Biology and Medicine, 2015, 83, 283-295.	1.3	37
28	Ca ²⁺ -Myristoyl Switch in Neuronal Calcium Sensor-1: A Role of C-Terminal Segment. CNS and Neurological Disorders - Drug Targets, 2015, 14, 437-451.	0.8	25
29	Ca2+-dependent regulatory activity of recoverin in photoreceptor raft structures: The role of caveolin-1. Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology, 2014, 8, 44-49.	0.3	3
30	Oxidation mimicking substitution of conservative cysteine in recoverin suppresses its membrane association. Amino Acids, 2012, 42, 1435-1442.	1.2	46
31	Amino acid sequences of two immune-dominant epitopes of recoverin are involved in Ca2+/recoverin-dependent inhibition of phosphorylation of rhodopsin. Biochemistry (Moscow), 2011, 76, 332-338.	0.7	18
32	Recoverin as a Redox-Sensitive Protein. Journal of Proteome Research, 2007, 6, 1855-1863.	1.8	34
33	One of the Ca2+ binding sites of recoverin exclusively controls interaction with rhodopsin kinase. Biological Chemistry, 2005, 386, 285-9.	1.2	9
34	Recoverin Is a Zinc-Binding Protein. Journal of Proteome Research, 2003, 2, 51-57.	1.8	44
35	Ca2+-Myristoyl Switch in the Neuronal Calcium Sensor Recoverin Requires Different Functions of Ca2+-binding Sites. Journal of Biological Chemistry, 2002, 277, 50365-50372.	1.6	61
36	Effects of mutations in the calcium-binding sites of recoverin on its calcium affinity: evidence for successive filling of the calcium binding sites. Protein Engineering, Design and Selection, 2000, 13, 783-790.	1.0	43

#	Article	IF	CITATIONS
37	Obtaining and characterization of EF-hand mutants of recoverin. FEBS Letters, 1998, 440, 116-118.	1.3	20