Aseel Hassan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10440233/publications.pdf Version: 2024-02-01

ASEEL HASSAN

#	Article	IF	CITATIONS
1	The use of noble metal coatings and nanoparticles for the modification of medical implant materials. Materials and Design, 2021, 204, 109672.	7.0	68
2	Metal salt modified PEDOT:PSS as anode buffer layer and its effect on power conversion efficiency of organic solar cells. Organic Electronics, 2015, 24, 73-79.	2.6	63
3	Liquid crystalline metal phthalocyanines: Structural organization on the substrate surface. Coordination Chemistry Reviews, 2016, 310, 131-153.	18.8	59
4	Efficient P3HT:PCBM bulk heterojunction organic solar cells; effect of post deposition thermal treatment. Journal of Materials Science: Materials in Electronics, 2016, 27, 7038-7048.	2.2	51
5	Effect of pyrene substitution on the formation and sensor properties of phthalocyanine-single walled carbon nanotube hybrids. Sensors and Actuators B: Chemical, 2014, 199, 277-283.	7.8	48
6	Dye-modified carbon nanotubes for the optical detection of amines vapours. Sensors and Actuators B: Chemical, 2015, 207, 224-234.	7.8	36
7	Phthalocyanine films as active layers of optical sensors for pentachlorophenol detection. Sensors and Actuators B: Chemical, 2009, 139, 557-562.	7.8	35
8	High performance ternary solar cells based on P3HT:PCBM and ZnPc-hybrids. RSC Advances, 2016, 6, 93453-93462.	3.6	33
9	Preparation of single walled carbon nanotube-pyrene 3D hybrid nanomaterial and its sensor response to ammonia. Sensors and Actuators B: Chemical, 2018, 256, 853-860.	7.8	32
10	Hybrid materials of pyrene substituted phthalocyanines with single-walled carbon nanotubes: structure and sensing properties. RSC Advances, 2015, 5, 91855-91862.	3.6	30
11	Effect of covalent and non-covalent linking of zinc(II) phthalocyanine functionalised carbon nanomaterials on the sensor response to ammonia. Synthetic Metals, 2017, 227, 78-86.	3.9	28
12	Optical detection of pentachlorophenol in water using thin films of octa-tosylamido substituted zinc phthalocyanine. Sensors and Actuators B: Chemical, 2010, 150, 523-528.	7.8	27
13	Synthesis and organic solar cell performance of BODIPY and coumarin functionalized SWCNTs or graphene oxide nanomaterials. Dalton Transactions, 2018, 47, 9617-9626.	3.3	27
14	Effect of Interface on the Orientation of the Liquid Crystalline Nickel Phthalocyanine Films. Journal of Physical Chemistry C, 2009, 113, 19251-19257.	3.1	25
15	Effect of covalent and non-covalent linking on the structure, optical and electrical properties of novel zinc(II) phthalocyanine functionalized carbon nanomaterials. Polyhedron, 2016, 110, 37-45.	2.2	25
16	The Effect of Fullerene Derivatives Ratio on P3HT-based Organic Solar Cells. Energy Procedia, 2015, 74, 439-445.	1.8	22
17	Effect of substituents on the orientation of octasubstituted copper(II) phthalocyanine thin films. Synthetic Metals, 2012, 162, 735-742.	3.9	21
18	The synthesis and characterization of novel mesomorphic octa- and tetra-alkylthio-substituted lead phthalocyanines and their films. Dyes and Pigments, 2011, 88, 280-289.	3.7	18

ASEEL HASSAN

#	Article	IF	CITATIONS
19	Copper phthalocyanine/single walled carbon nanotubes hybrid thin films for pentachlorophenol detection. Sensors and Actuators B: Chemical, 2014, 190, 990-998.	7.8	18
20	Trimethylamine sorption into thin layers of fluoroalkyloxy and alkyloxy substituted phthalocyanines: Optical detection and DFT calculations. Sensors and Actuators B: Chemical, 2015, 216, 204-211.	7.8	17
21	Volatile Phthalocyanines: Vapor Pressure and Thermodynamics. Critical Reviews in Solid State and Materials Sciences, 2009, 34, 180-189.	12.3	16
22	Metal Ir coatings on endocardial electrode tips, obtained by MOCVD. Applied Surface Science, 2017, 425, 1052-1058.	6.1	16
23	Interaction of metal phthalocyanines with carbon zigzag and armchair nanotubes with different diameters. Applied Surface Science, 2018, 457, 235-240.	6.1	16
24	Orientation of the liquid crystalline nickel phthalocyanine films confined between electrodes. Synthetic Metals, 2011, 161, 1996-2000.	3.9	15
25	Distribution of single-walled carbon nanotubes in pyrene containing liquid crystalline asymmetric zinc phthalocyanine matrix. Dalton Transactions, 2014, 43, 4689.	3.3	15
26	Organic solar cells: Study of combined effects of active layer nanostructure and electron and hole transport layers. Thin Solid Films, 2017, 636, 760-764.	1.8	14
27	Composite materials of P3HT:PCBM with pyrene substituted zinc(II) phthalocyanines: Characterisation and application in organic solar cells. Solar Energy, 2019, 189, 1-7.	6.1	14
28	Spectral characterization of thin films of vanadyl hexadecafluorophthalocyanine VOPcF16. Surface Science, 2008, 602, 2368-2372.	1.9	13
29	Effects of interactions with the surface on the orientation of the mesogenic monoazacrown-substituted phthalocyanine films. Thin Solid Films, 2010, 518, 5745-5752.	1.8	11
30	Copper Phthalocyanine Functionalized Single-Walled Carbon Nanotubes: Thin Films for Optical Detection. Journal of Nanoscience and Nanotechnology, 2015, 15, 2157-2167.	0.9	11
31	Vapour pressure of tetra-tert-butyl substituted phthalocyanines. Thermochimica Acta, 2010, 501, 108-111.	2.7	10
32	Study of the interaction between simazine and metal-substituted phthalocyanines using spectral methods. Sensors and Actuators B: Chemical, 2012, 175, 73-77.	7.8	10
33	Pyrene containing liquid crystalline asymmetric phthalocyanines and their composite materials with single-walled carbon nanotubes. Journal of Porphyrins and Phthalocyanines, 2018, 22, 56-63.	0.8	8
34	Highly reproducible perovskite solar cells via controlling the morphologies of the perovskite thin films by the solution-processed two-step method. Journal of Materials Science: Materials in Electronics, 2018, 29, 16426-16436.	2.2	8
35	Phthalocyanine films as active layers of optical sensors for pentachlorophenol and simazine detection. Procedia Engineering, 2011, 25, 272-275.	1.2	7
36	Copper Phthalocyanine Functionalized Single-Walled Carbon Nanotubes: Thin Film Deposition and Sensing Properties. Key Engineering Materials, 0, 605, 461-464.	0.4	7

ASEEL HASSAN

#	Article	IF	CITATIONS
37	Surface interaction of copper phthalocyanine modified single walled carbon nanotubes with pesticides. Sensors and Actuators B: Chemical, 2016, 224, 780-788.	7.8	7
38	Ammonia sorption studies into thin layers of hexadecafluorinated cobalt phthalocyanine using optical techniques. Journal of Porphyrins and Phthalocyanines, 2013, 17, 934-940.	0.8	5
39	Thin films of chlorosubstituted vanadyl phthalocyanine: charge transport properties and optical spectroscopy study of structure. Journal of Materials Science: Materials in Electronics, 2018, 29, 16791-16798.	2.2	5
40	The effects of solvent treated PEDOT:PSS buffer layer in organic solar cells. Journal of Materials Science: Materials in Electronics, 2018, 29, 13889-13896.	2.2	3
41	Optical Detection of Herbicides in Water using Dye-Modified Single Walled Carbon Nanotubes. International Journal on Smart Sensing and Intelligent Systems, 2014, 7, 1-5.	0.7	0