Zarina Aspanut

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10440169/publications.pdf Version: 2024-02-01

ZADINA ASDANIIT

#	Article	lF	CITATIONS
1	Optical properties and crystallinity of hydrogenated nanocrystalline silicon (nc-Si:H) thin films deposited by rf-PECVD. Vacuum, 2012, 86, 1195-1202.	3.5	42
2	Annealing effect on the structural and optical properties of embedded Au nanoparticles in silicon suboxide films. Vacuum, 2012, 86, 1367-1372.	3.5	25
3	Synthesis of indium-catalyzed Si nanowires by hot-wire chemical vapor deposition. Materials Letters, 2011, 65, 2452-2454.	2.6	24
4	Effect of rf power on the growth of silicon nanowires by hot-wire assisted plasma enhanced chemical vapor deposition (HW-PECVD) technique. Thin Solid Films, 2011, 519, 4933-4939.	1.8	19
5	Effect of substrate temperature on gold-catalyzed silicon nanostructures growth by hot-wire chemical vapor deposition (HWCVD). Applied Surface Science, 2011, 257, 3320-3324.	6.1	16
6	Structural and photoluminescence investigation on the hot-wire assisted plasma enhanced chemical vapor deposition growth silicon nanowires. Journal of Luminescence, 2012, 132, 1345-1352.	3.1	16
7	Structural and optical properties of nc-Si:H thin films deposited by layer-by-layer technique. Journal of Materials Science: Materials in Electronics, 2014, 25, 286-296.	2.2	16
8	Hydrodynamic Chromatography of Silica Colloids on Small Spherical Nonporous Silica Particles. Analytical Sciences, 2009, 25, 301-306.	1.6	15
9	Light-scattering and turbidimetric detection of silica colloids in size-exclusion chromatography. Analytical and Bioanalytical Chemistry, 2008, 391, 353-359.	3.7	13
10	Radial growth of slanting-columnar nanocrystalline Si on Si nanowires. Chemical Physics Letters, 2011, 515, 68-71.	2.6	13
11	Silicon nanostructures fabricated by Au and SiH4 co-deposition technique using hot-wire chemical vapor deposition. Thin Solid Films, 2011, 520, 74-78.	1.8	12
12	Effects of post-thermal annealing temperature on the optical and structural properties of gold particles on silicon suboxide films. Applied Surface Science, 2011, 257, 2208-2213.	6.1	9
13	Formation of gold nanoparticles in silicon suboxide films prepared by plasma enhanced chemical vapour deposition. Thin Solid Films, 2011, 519, 4952-4957.	1.8	8
14	Effect of rapid thermal annealing time on Au/SiOx film prepared by hot wire assisted plasma enhanced chemical vapour deposition technique. Materials Chemistry and Physics, 2013, 140, 37-41.	4.0	7
15	Growth of Si-based core–shell nanowires through gases decomposition reactions with tunable morphologies, compositions, and electrochemical properties. Journal of Materials Science: Materials in Electronics, 2018, 29, 5597-5612.	2.2	6
16	Au/nc-Si:H core–shell nanostructures prepared by hot wire assisted plasma enhanced chemical vapor deposition technique. Surface and Coatings Technology, 2013, 231, 394-398.	4.8	5
17	Formation of Silicon/Carbon Core-Shell Nanowires Using Carbon Nitride Nanorods Template and Gold Catalyst. Journal of Nanomaterials, 2013, 2013, 1-7.	2.7	5
18	Light-scattering detection with a fluorimetric detector in high-performance liquid chromatography. Journal of Chromatography A, 2007, 1147, 42-45.	3.7	3

#	Article	IF	CITATIONS
19	Effect of Rapid Thermal Annealing Time on the Structural and Optical Properties of Layered Structured SiO _x /Au/SiO _x Film. Advanced Materials Research, 0, 501, 221-225.	0.3	2
20	Influence of Nitrogenâ^•Methane Ratio on the Properties of Hydrogenated Amorphous Carbon Nitride Deposited by r.f. PECVD Technique. , 2009, , .		0