
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10440103/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Modular Chemistry:  Secondary Building Units as a Basis for the Design of Highly Porous and Robust Metalâ^'Organic Carboxylate Frameworks. Accounts of Chemical Research, 2001, 34, 319-330.	7.6	4,980
2	Theranostics: Combining Imaging and Therapy. Bioconjugate Chemistry, 2011, 22, 1879-1903.	1.8	1,126
3	From Condensed Lanthanide Coordination Solids to Microporous Frameworks Having Accessible Metal Sites. Journal of the American Chemical Society, 1999, 121, 1651-1657.	6.6	843
4	Assembly of Metalâ^'Organic Frameworks from Large Organic and Inorganic Secondary Building Units:Â New Examples and Simplifying Principles for Complex Structuresâ–µ. Journal of the American Chemical Society, 2001, 123, 8239-8247.	6.6	789
5	A Microporous Lanthanide-Organic Framework. Angewandte Chemie - International Edition, 1999, 38, 2590-2594.	7.2	452
6	Large Free Volume in Maximally Interpenetrating Networks:Â The Role of Secondary Building Units Exemplified by Tb2(ADB)3[(CH3)2SO]4·16[(CH3)2SO]1. Journal of the American Chemical Society, 2000, 122, 4843-4844.	6.6	396
7	Hydroxyl Stereochemistry and Amine Number within Poly(glycoamidoamine)s Affect Intracellular DNA Delivery. Journal of the American Chemical Society, 2005, 127, 3004-3015.	6.6	234
8	Polycationic β-Cyclodextrin "Click Clustersâ€i  Monodisperse and Versatile Scaffolds for Nucleic Acid Delivery. Journal of the American Chemical Society, 2008, 130, 4618-4627.	6.6	204
9	Trehalose Click Polymers Inhibit Nanoparticle Aggregation and Promote pDNA Delivery in Serum. Journal of the American Chemical Society, 2006, 128, 8176-8184.	6.6	191
10	Polymeric Delivery of Therapeutic Nucleic Acids. Chemical Reviews, 2021, 121, 11527-11652.	23.0	138
11	New Poly(d-glucaramidoamine)s Induce DNA Nanoparticle Formation and Efficient Gene Delivery into Mammalian Cells. Journal of the American Chemical Society, 2004, 126, 7422-7423.	6.6	133
12	Structural Effects of Carbohydrate-Containing Polycations on Gene Delivery. 1. Carbohydrate Size and Its Distance from Charge Centers. Bioconjugate Chemistry, 2003, 14, 247-254.	1.8	122
13	Nonviral Gene Delivery with Cationic Glycopolymers. Accounts of Chemical Research, 2019, 52, 1347-1358.	7.6	116
14	Deciphering the Role of Hydrogen Bonding in Enhancing pDNAâ^Polycation Interactions. Langmuir, 2007, 23, 9773-9784.	1.6	114
15	Structural Effects of Carbohydrate-Containing Polycations on Gene Delivery. 2. Charge Center Type. Bioconjugate Chemistry, 2003, 14, 255-261.	1.8	104
16	Poly(glycoamidoamine)s for Gene Delivery. Structural Effects on Cellular Internalization, Buffering Capacity, and Gene Expression. Bioconjugate Chemistry, 2007, 18, 19-30.	1.8	99
17	Membrane and Nuclear Permeabilization by Polymeric pDNA Vehicles: Efficient Method for Gene Delivery or Mechanism of Cytotoxicity?. Molecular Pharmaceutics, 2012, 9, 523-538.	2.3	98
18	Polymer beacons for luminescence and magnetic resonance imaging of DNA delivery. Proceedings of the United States of America, 2009, 106, 16913-16918.	3.3	90

#	Article	IF	CITATIONS
19	A β-Cyclodextrin "Click Cluster―Decorated with Seven Paramagnetic Chelates Containing Two Water Exchange Sites. Bioconjugate Chemistry, 2008, 19, 1505-1509.	1.8	87
20	Poly(glycoamidoamine) Vehicles Promote pDNA Uptake through Multiple Routes and Efficient Gene Expression via Caveolae-Mediated Endocytosis. Molecular Pharmaceutics, 2010, 7, 738-750.	2.3	87
21	Effects of trehalose click polymer length on pDNA complex stability and delivery efficacy. Biomaterials, 2007, 28, 2885-2898.	5.7	85
22	Poly(trehalose): Sugar-Coated Nanocomplexes Promote Stabilization and Effective Polyplex-Mediated siRNA Delivery. Journal of the American Chemical Society, 2013, 135, 15417-15424.	6.6	82
23	Polycation Architecture and Assembly Direct Successful Gene Delivery: Micelleplexes Outperform Polyplexes via Optimal DNA Packaging. Journal of the American Chemical Society, 2019, 141, 15804-15817.	6.6	77
24	Interaction of Poly(ethylenimine)–DNA Polyplexes with Mitochondria: Implications for a Mechanism of Cytotoxicity. Molecular Pharmaceutics, 2011, 8, 1709-1719.	2.3	76
25	Polymeric Nucleic Acid Vehicles Exploit Active Interorganelle Trafficking Mechanisms. ACS Nano, 2013, 7, 347-364.	7.3	76
26	Investigating the Effects of Block versus Statistical Glycopolycations Containing Primary and Tertiary Amines for Plasmid DNA Delivery. Biomacromolecules, 2014, 15, 2616-2628.	2.6	71
27	Sustainable Polyesters Derived from Glucose and Castor Oil: Building Block Structure Impacts Properties. ACS Macro Letters, 2015, 4, 284-288.	2.3	69
28	Poly(glycoamidoamine)s for Gene Delivery:Â Stability of Polyplexes and Efficacy with Cardiomyoblast Cells. Bioconjugate Chemistry, 2006, 17, 101-108.	1.8	67
29	Versatile supramolecular pDNA vehicles via "click polymerization―of β-cyclodextrin with oligoethyleneamines. Biomaterials, 2009, 30, 928-938.	5.7	66
30	Exploring the Mechanism of Plasmid DNA Nuclear Internalization with Polymer-Based Vehicles. Molecular Pharmaceutics, 2012, 9, 2256-2267.	2.3	60
31	Glucose-Containing Diblock Polycations Exhibit Molecular Weight, Charge, and Cell-Type Dependence for pDNA Delivery. Biomacromolecules, 2014, 15, 1716-1726.	2.6	51
32	Epoxy Resin Thermosets Derived from Trehalose and Î ² -Cyclodextrin. Macromolecules, 2016, 49, 8397-8406.	2.2	51
33	Correlation of Amine Number and pDNA Binding Mechanism for Trehalose-Based Polycations. Langmuir, 2008, 24, 8090-8101.	1.6	49
34	General Structure–Activity Relationship for Poly(glycoamidoamine)s: The Effect of Amine Density on Cytotoxicity and DNA Delivery Efficiency. Bioconjugate Chemistry, 2008, 19, 428-440.	1.8	48
35	Degradation of Poly(glycoamidoamine) DNA Delivery Vehicles: Polyamide Hydrolysis at Physiological Conditions Promotes DNA Release. Biomacromolecules, 2010, 11, 316-325.	2.6	47
36	Carbohydrate Polymers for Nonviral Nucleic Acid Delivery. Topics in Current Chemistry, 2010, 296, 131-190.	4.0	45

#	Article	IF	CITATIONS
37	Macromolecular Imaging Agents Containing Lanthanides: Can Conceptual Promise Lead to Clinical Potential?. Macromolecules, 2012, 45, 8939-8952.	2.2	45
38	Cationic glycopolymers for the delivery of pDNA to human dermal fibroblasts and rat mesenchymal stem cells. Biomaterials, 2012, 33, 1851-1862.	5.7	44
39	Peptide-Functionalized Poly(ethylene glycol) Star Polymers: DNA Delivery Vehicles with Multivalent Molecular Architecture. Bioconjugate Chemistry, 2008, 19, 76-88.	1.8	43
40	Poly(2-deoxy-2-methacrylamido glucopyranose)- <i>b</i> -Poly(methacrylate amine)s: Optimization of Diblock Glycopolycations for Nucleic Acid Delivery. ACS Macro Letters, 2013, 2, 230-235.	2.3	43
41	<i>N</i> -Acetylgalactosamine Block- <i>co</i> -Polycations Form Stable Polyplexes with Plasmids and Promote Liver-Targeted Delivery. Biomacromolecules, 2016, 17, 830-840.	2.6	42
42	Trehalose-Based Block Copolycations Promote Polyplex Stabilization for Lyophilization and in Vivo pDNA Delivery. ACS Biomaterials Science and Engineering, 2016, 2, 43-55.	2.6	42
43	In Vivo Delivery of Nucleic Acids via Glycopolymer Vehicles Affords Therapeutic Infarct Size Reduction In Vivo. Molecular Therapy, 2012, 20, 601-608.	3.7	41
44	Degradable Thermosets from Sugar-Derived Dilactones. Macromolecules, 2014, 47, 498-505.	2.2	38
45	Poly(glycoamidoamine)s: Cationic glycopolymers for DNA delivery. Journal of Polymer Science Part A, 2006, 44, 6895-6908.	2.5	36
46	Amide Spacing Influences pDNA Binding of Poly(amidoamine)s. Biomacromolecules, 2010, 11, 326-332.	2.6	34
47	Interaction of Poly(glycoamidoamine) DNA Delivery Vehicles with Cell-Surface Glycosaminoglycans Leads to Polyplex Internalization in a Manner Not Solely Dependent on Charge. Molecular Pharmaceutics, 2010, 7, 1757-1768.	2.3	33
48	Advancing Polymeric Delivery Systems Amidst a Nucleic Acid Therapy Renaissance. ACS Macro Letters, 2013, 2, 928-934.	2.3	31
49	Poly(glycoamidoamine)s: a broad class of carbohydrate-containing polycations for nucleic acid delivery. Trends in Biotechnology, 2011, 29, 443-453.	4.9	30
50	MAG versus PEC: Incorporating a Poly(MAG) Layer to Promote Colloidal Stability of Nucleic Acid/"Click Cluster―Complexes. ACS Macro Letters, 2012, 1, 609-613.	2.3	29
51	Highlighting the Role of Polymer Length, Carbohydrate Size, and Nucleic Acid Type in Potency of Glycopolycation Agents for pDNA and siRNA Delivery. Biomacromolecules, 2013, 14, 3903-3915.	2.6	28
52	DNA delivery in vitro via surface release from multilayer assemblies with poly(glycoamidoamine)s. Acta Biomaterialia, 2009, 5, 925-933.	4.1	25
53	Comparison of a Tartaric Acid Derived Polymeric MRI Contrast Agent to a Small Molecule Model Chelate. Bioconjugate Chemistry, 2008, 19, 24-27.	1.8	23
54	Structure–Activity Examination of Poly(glycoamidoguanidine)s: Glycopolycations Containing Guanidine Units for Nucleic Acid Delivery. Biomacromolecules, 2011, 12, 2055-2063.	2.6	20

#	Article	IF	CITATIONS
55	Glucose-Based Poly(ester amines): Synthesis, Degradation, and Biological Delivery. ACS Macro Letters, 2012, 1, 1388-1392.	2.3	20
56	Effects of Trehalose Polycation End-Group Functionalization on Plasmid DNA Uptake and Transfection. Biomacromolecules, 2012, 13, 2229-2239.	2.6	20
57	Quinine copolymer reporters promote efficient intracellular DNA delivery and illuminate a protein-induced unpackaging mechanism. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 32919-32928.	3.3	20
58	Designer Materials for Nucleic Acid Delivery. MRS Bulletin, 2005, 30, 635-639.	1.7	18
59	Spatiotemporal Cellular Imaging of Polymer–pDNA Nanocomplexes Affords in Situ Morphology and Trafficking Trends. Molecular Pharmaceutics, 2013, 10, 4120-4135.	2.3	17
60	Heparin Enhances Transfection in Concert with a Trehalose-Based Polycation with Challenging Cell Types. Biomacromolecules, 2017, 18, 56-67.	2.6	16
61	Quantitation of Complexed versus Free Polymers in Interpolyelectrolyte Polyplex Formulations. ACS Macro Letters, 2013, 2, 1038-1041.	2.3	15
62	Glycopolycation–DNA Polyplex Formulation N/P Ratio Affects Stability, Hemocompatibility, and in Vivo Biodistribution. Biomacromolecules, 2019, 20, 1530-1544.	2.6	14
63	Gene Delivery with Novel Poly(l-tartaramidoamine)s. ACS Symposium Series, 2006, , 217-227.	0.5	13
64	Polyplexes Are Endocytosed by and Trafficked within Filopodia. Biomacromolecules, 2020, 21, 1379-1392.	2.6	13
65	Lanthanide-Containing Polycations for Monitoring Polyplex Dynamics via Lanthanide Resonance Energy Transfer. Biomacromolecules, 2014, 15, 1612-1624.	2.6	12
66	Complexation between DNA and Hydrophilic-Cationic Diblock Copolymers. Journal of Physical Chemistry B, 2017, 121, 2230-2243.	1.2	12
67	Structures and Protonation States of Hydrophilic–Cationic Diblock Copolymers and Their Binding with Plasmid DNA. Journal of Physical Chemistry B, 2018, 122, 2449-2461.	1.2	12
68	A Polycation Scaffold Presenting Tunable "Click―Sites: Conjugation to Carbohydrate Ligands and Examination of Hepatocyteâ€Targeted pDNA Delivery. Macromolecular Bioscience, 2010, 10, 585-598.	2.1	11
69	Lipophilic Polycation Vehicles Display High Plasmid DNA Delivery to Multiple Cell Types. Bioconjugate Chemistry, 2017, 28, 2035-2040.	1.8	11
70	Molecular Additives Significantly Enhance Glycopolymer-Mediated Transfection of Large Plasmids and Functional CRISPR-Cas9 Transcription Activation Ex Vivo in Primary Human Fibroblasts and Induced Pluripotent Stem Cells. Bioconjugate Chemistry, 2019, 30, 418-431.	1.8	11
71	Fast, Efficient, and Gentle Transfection of Human Adherent Cells in Suspension. ACS Applied Materials & Interfaces, 2016, 8, 8870-8874.	4.0	9
72	Trehalose-functionalized block copolymers form serum-stable micelles. Polymer Chemistry, 2014, 5, 5160-5167.	1.9	6

#	Article	IF	CITATIONS
73	A theranostic polycation containing trehalose and lanthanide chelate domains for siRNA delivery and monitoring. RSC Advances, 2015, 5, 74102-74106.	1.7	6
74	The Effects of Charge Separation in Quaternary Ammonium, DABCO-Containing Polymers on In Vitro Toxicity and Gene Delivery. Materials Research Society Symposia Proceedings, 2002, 724, N10.2.1.	0.1	4