Bien Tan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1043924/publications.pdf Version: 2024-02-01

		21215	25230
181	14,192	62	113
papers	citations	h-index	g-index
187	187	187	12960
all docs	docs citations	times ranked	citing authors

RIEN TAN

#	Article	IF	CITATIONS
1	Unprecedented Processable Hypercrosslinked Polymers with Controlled Knitting. Macromolecular Rapid Communications, 2022, 43, e2100449.	2.0	4
2	Grafting Hypercrosslinked Polymers on TiO ₂ Surface for Anchoring Ultrafine Pd Nanoparticles: Dramatically Enhanced Efficiency and Selectivity toward Photocatalytic Reduction of CO ₂ to CH ₄ . Small, 2022, 18, e2105083.	5.2	30
3	Creating chemisorption sites for enhanced CO2 chemical conversion activity through amine modification of metalloporphyrin-based hypercrosslinked polymers. Chemical Engineering Journal, 2022, 431, 134326.	6.6	25
4	Threeâ€Dimensional Crystalline Covalent Triazine Frameworks via a Polycondensation Approach. Angewandte Chemie, 2022, 134, .	1.6	2
5	Threeâ€Dimensional Crystalline Covalent Triazine Frameworks via a Polycondensation Approach. Angewandte Chemie - International Edition, 2022, 61, .	7.2	35
6	Smart Synthesis of Hollow Microporous Organic Capsules with a Polyaniline Modified Shell. Macromolecular Rapid Communications, 2022, 43, e2100836.	2.0	5
7	A steric hindrance alleviation strategy to enhance the photo-switching efficiency of azobenzene functionalized metal–organic frameworks toward tailorable carbon dioxide capture. Journal of Materials Chemistry A, 2022, 10, 8303-8308.	5.2	11
8	Covalent Triazine Frameworks(CTFs) for Photocatalytic Applications. Chemical Research in Chinese Universities, 2022, 38, 310-324.	1.3	10
9	Selective photocatalytic CO2 reduction in aerobic environment by microporous Pd-porphyrin-based polymers coated hollow TiO2. Nature Communications, 2022, 13, 1400.	5.8	131
10	Facile fabrication of hypercrosslinked microporous polymer nanospheres for effective inhibition of triple negative breast cancer cells proliferation. Journal of Colloid and Interface Science, 2022, 620, 94-106.	5.0	5
11	Crystalline Covalent Triazine Frameworks with Fibrous Morphology via a Lowâ€Temperature Polycondensation of Planar Monomer. Small, 2022, 18, e2200984.	5.2	9
12	Carbonate-based hyper-cross-linked polymers with pendant versatile electron-withdrawing functional groups for CO ₂ adsorption and separation. Journal of Materials Chemistry A, 2022, 10, 15062-15073.	5.2	8
13	Integrating single Co sites into crystalline covalent triazine frameworks for photoreduction of CO ₂ . Chemical Communications, 2022, 58, 8121-8124.	2.2	13
14	Pyrene-based covalent triazine framework towards high-performance sensing and photocatalysis applications. Science China Materials, 2021, 64, 149-157.	3.5	20
15	Low ost Hypercrosslinked Polymers by Direct Knitting Strategy for Catalytic Applications. Advanced Functional Materials, 2021, 31, 2008265.	7.8	77
16	Molecular Engineering for Organic Cage Frameworks with Fixed Pore Size to Tune Their Porous Properties and Improve CO ₂ Capture. ACS Applied Polymer Materials, 2021, 3, 171-177.	2.0	9
17	Heteroatom Engineering of Hyper-Cross-Linked Polymers for Iodine Capture. ACS Applied Polymer Materials, 2021, 3, 209-215.	2.0	20
18	Two-dimensional crystalline covalent triazine frameworks <i>via</i> dual modulator control for efficient photocatalytic oxidation of sulfides. Journal of Materials Chemistry A, 2021, 9, 16405-16410.	5.2	29

#	Article	IF	CITATIONS
19	A novel self-templating strategy for facile fabrication of monodisperse polymeric microporous capsules with a tunable hollow structure. Polymer Chemistry, 2021, 12, 2689-2694.	1.9	6

20 Transition-metal-free radical homocoupling polymerization to synthesize conjugated poly(phenylene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf

21	Covalent triazine frameworks constructed <i>via</i> benzyl halide monomers showing high photocatalytic activity in biomass reforming. Chemical Communications, 2021, 57, 5147-5150.	2.2	21
22	Facile preparation of silver nanocluster self-assemblies with aggregation-induced emission by equilibrium shifting. Nanoscale, 2021, 13, 14207-14213.	2.8	13
23	Hypercrosslinked Polymers: Lowâ€Cost Hypercrosslinked Polymers by Direct Knitting Strategy for Catalytic Applications (Adv. Funct. Mater. 12/2021). Advanced Functional Materials, 2021, 31, 2170082.	7.8	8
24	Crystallization of Covalent Triazine Frameworks via a Heterogeneous Nucleation Approach for Efficient Photocatalytic Applications. Chemistry of Materials, 2021, 33, 1994-2003.	3.2	48
25	Triptyceneâ€based Chiral Porous Polyimides for Enantioselective Membrane Separation. Angewandte Chemie - International Edition, 2021, 60, 12781-12785.	7.2	31
26	Triptyceneâ€based Chiral Porous Polyimides for Enantioselective Membrane Separation. Angewandte Chemie, 2021, 133, 12891-12895.	1.6	6
27	The Exfoliation of Crystalline Covalent Triazine Frameworks by Glycerol Intercalation. Advanced Materials Interfaces, 2021, 8, 2100374.	1.9	6
28	Eco-Friendly Phosphorus and Nitrogen-Rich Inorganic–Organic Hybrid Hypercross-linked Porous Polymers via a Low-Cost Strategy. Macromolecules, 2021, 54, 5848-5855.	2.2	32
29	Amine or Azo functionalized hypercrosslinked polymers for highly efficient CO2 capture and selective CO2 capture. Materials Today Communications, 2021, 27, 102338.	0.9	7
30	Construction and gas uptake performance of cyano-functional hypercrosslinked polymers via knitting strategy. Chemical Engineering Journal, 2021, 426, 130731.	6.6	32
31	Porous Organic Polymers for Catalytic Conversion of Carbon Dioxide. Chemistry - an Asian Journal, 2021, 16, 3833-3850.	1.7	14
32	Immobilized covalent triazine frameworks films as effective photocatalysts for hydrogen evolution reaction. Nature Communications, 2021, 12, 6596.	5.8	87
33	Microporous polymer based on hexaazatriphenylene-fused triptycene for CO2 capture and conversion. Science China Materials, 2020, 63, 429-436.	3.5	9
34	Strongâ€Baseâ€Assisted Synthesis of a Crystalline Covalent Triazine Framework with High Hydrophilicity via Benzylamine Monomer for Photocatalytic Water Splitting. Angewandte Chemie - International Edition, 2020, 59, 6007-6014.	7.2	254
35	An artificial photosynthesis system comprising a covalent triazine framework as an electron relay facilitator for photochemical carbon dioxide reduction. Journal of Materials Chemistry C, 2020, 8, 192-200.	2.7	43
36	Highly Luminescent Copper Nanoclusters Stabilized by Ascorbic Acid for the Quantitative Detection of 4-Aminoazobenzene. Nanomaterials, 2020, 10, 1531.	1.9	11

#	Article	IF	CITATIONS
37	Embedding activated carbon nanospheres into polymer-derived porous carbon networks to boost electrocatalytic oxygen reduction. Chemical Communications, 2020, 56, 9791-9794.	2.2	4
38	Facile Synthesis of Ultrastable Fluorescent Copper Nanoclusters and Their Cellular Imaging Application. Nanomaterials, 2020, 10, 1678.	1.9	13
39	Switching porosity of stable triptycene-based cage <i>via</i> solution-state assembly processes. RSC Advances, 2020, 10, 9088-9092.	1.7	8
40	Donor–Acceptor Charge Migration System of Superhydrophilic Covalent Triazine Framework and Carbon Nanotube toward High Performance Solar Thermal Conversion. ACS Energy Letters, 2020, 5, 1300-1306.	8.8	47
41	Functionalized hierarchical porous polymeric monoliths as versatile platforms to support uniform and ultrafine metal nanoparticles for heterogeneous catalysis. Chemical Engineering Journal, 2020, 390, 124485.	6.6	41
42	Palladium as a Superior Cocatalyst to Platinum for Hydrogen Evolution Using Covalent Triazine Frameworks as a Support. ACS Applied Materials & Interfaces, 2020, 12, 12774-12782.	4.0	56
43	Ultrahigh-CO2 Adsorption Capacity and CO2/N2 Selectivity by Nitrogen-Doped Porous Activated Carbon Monolith. Bulletin of the Chemical Society of Japan, 2020, 93, 421-426.	2.0	14
44	Strongâ€Baseâ€Assisted Synthesis of a Crystalline Covalent Triazine Framework with High Hydrophilicity via Benzylamine Monomer for Photocatalytic Water Splitting. Angewandte Chemie, 2020, 132, 6063-6070.	1.6	65
45	Synthesis of surface functionalized hollow microporous organic capsules for doxorubicin delivery to cancer cells. Polymer Chemistry, 2020, 11, 2110-2118.	1.9	19
46	Facile Synthesis of Hypercrosslinked Hollow Microporous Organic Capsules for Electrochemical Sensing of Cu ^{II} Ions. Chemistry - A European Journal, 2019, 25, 548-555.	1.7	22
47	Hollow Covalent Triazine Frameworks with Variable Shell Thickness and Morphology. Advanced Functional Materials, 2019, 29, 1904781.	7.8	80
48	Design of D–A ₁ –A ₂ Covalent Triazine Frameworks via Copolymerization for Photocatalytic Hydrogen Evolution. ACS Catalysis, 2019, 9, 9438-9445.	5.5	172
49	PVP-templated highly luminescent copper nanoclusters for sensing trinitrophenol and living cell imaging. Nanoscale, 2019, 11, 1286-1294.	2.8	69
50	Covalent triazine frameworks: synthesis and applications. Journal of Materials Chemistry A, 2019, 7, 5153-5172.	5.2	433
51	Effects of synthesis methodology on microporous organic hyper-cross-linked polymers with respect to structural porosity, gas uptake performance and fluorescence properties. Polymer Chemistry, 2019, 10, 1299-1311.	1.9	93
52	Fe3O4 Nanoparticles Functionalized with Polymer Ligand for T1-Weighted MRI In Vitro and In Vivo. Polymers, 2019, 11, 882.	2.0	13
53	Rapid Polymerization of Aromatic Vinyl Monomers to Porous Organic Polymers via Acid Catalysis at Mild Condition. Macromolecular Rapid Communications, 2019, 40, e1900168.	2.0	4
54	Layered Thiazolo[5,4- <i>d</i>] Thiazole-Linked Conjugated Microporous Polymers with Heteroatom Adoption for Efficient Photocatalysis Application. ACS Applied Materials & Interfaces, 2019, 11, 15861-15868.	4.0	57

#	Article	IF	CITATIONS
55	Synthesis of MWCNT-Based Hyper-Cross-Linked Polymers with Thickness-Tunable Organic Porous Layers. ACS Macro Letters, 2019, 8, 403-408.	2.3	14
56	Controlling Monomer Feeding Rate to Achieve Highly Crystalline Covalent Triazine Frameworks. Advanced Materials, 2019, 31, e1807865.	11.1	158
57	Hyperporous Carbon from Triptyceneâ€Based Hypercrosslinked Polymer for Iodine Capture. Advanced Materials Interfaces, 2019, 6, 1900249.	1.9	35
58	Porous hypercrosslinked polymer-TiO2-graphene composite photocatalysts for visible-light-driven CO2 conversion. Nature Communications, 2019, 10, 676.	5.8	278
59	Efficient Synthesis of Ultrafine Gold Nanoparticles with Tunable Sizes in a Hyper-Cross-Linked Polymer for Nitrophenol Reduction. ACS Applied Nano Materials, 2019, 2, 546-553.	2.4	42
60	Naphthyl Substitution-Induced Fine Tuning of Porosity and Gas Uptake Capacity in Microporous Hyper-Cross-Linked Amine Polymers. Macromolecules, 2018, 51, 2923-2931.	2.2	54
61	Porous Interdigitation Molecular Cage from Tetraphenylethylene Trimeric Macrocycles That Showed Highly Selective Adsorption of CO ₂ and TNT Vapor in Air. Organic Letters, 2018, 20, 321-324.	2.4	18
62	Embedding Carbon Nitride into a Covalent Organic Framework with Enhanced Photocatalysis Performance. Chemistry - an Asian Journal, 2018, 13, 1674-1677.	1.7	51
63	Knitting polycyclic aromatic hydrocarbon-based microporous organic polymers for efficient CO ₂ capture. RSC Advances, 2018, 8, 10347-10354.	1.7	24
64	Period Increase and Amplitude Distribution of Kink Oscillation of Coronal Loop. Scientific Reports, 2018, 8, 4471.	1.6	28
65	A Facile Approach to Prepare Multiple Heteroatom-Doped Carbon Materials from Imine-Linked Porous Organic Polymers. Scientific Reports, 2018, 8, 4200.	1.6	57
66	Heteroatom-rich porous organic polymers constructed by benzoxazine linkage with high carbon dioxide adsorption affinity. Journal of Colloid and Interface Science, 2018, 509, 457-462.	5.0	45
67	Porous Organic Polymer from Aggregation-Induced Emission Macrocycle for White-Light Emission. Macromolecules, 2018, 51, 7863-7871.	2.2	24
68	Efficient alkaloid capture from water using a charged porous organic polymer. RSC Advances, 2018, 8, 33398-33402.	1.7	3
69	Engineering heteroatoms with atomic precision in donor–acceptor covalent triazine frameworks to boost photocatalytic hydrogen production. Journal of Materials Chemistry A, 2018, 6, 19775-19781.	5.2	172
70	Networked Cages for Enhanced CO ₂ Capture and Sensing. Advanced Science, 2018, 5, 1800141.	5.6	65
71	Crystalline Covalent Triazine Frameworks by Inâ€Situ Oxidation of Alcohols to Aldehyde Monomers. Angewandte Chemie, 2018, 130, 12144-12148.	1.6	50
72	Crystalline Covalent Triazine Frameworks by Inâ€Situ Oxidation of Alcohols to Aldehyde Monomers. Angewandte Chemie - International Edition, 2018, 57, 11968-11972.	7.2	266

#	Article	IF	CITATIONS
73	Soluble Hyperbranched Porous Organic Polymers. Macromolecular Rapid Communications, 2018, 39, e1800441.	2.0	13
74	Hyperporousâ€Carbonâ€Supported Nonprecious Metal Electrocatalysts for the Oxygen Reduction Reaction. Chemistry - an Asian Journal, 2018, 13, 2671-2676.	1.7	13
75	Hypercrosslinked porous polymer materials: design, synthesis, and applications. Chemical Society Reviews, 2017, 46, 3322-3356.	18.7	938
76	Wettable magnetic hypercrosslinked microporous nanoparticle as an efficient adsorbent for water treatment. Chemical Engineering Journal, 2017, 326, 109-116.	6.6	67
77	Hollow Hyper-Cross-Linked Nanospheres with Acid and Base Sites as Efficient and Water-Stable Catalysts for One-Pot Tandem Reactions. ACS Catalysis, 2017, 7, 3693-3702.	5.5	101
78	A novel metalporphyrin-based microporous organic polymer with high CO ₂ uptake and efficient chemical conversion of CO ₂ under ambient conditions. Journal of Materials Chemistry A, 2017, 5, 1509-1515.	5.2	186
79	Synthesis of water-soluble and highly fluorescent gold nanoclusters for Fe ³⁺ sensing in living cells using fluorescence imaging. Journal of Materials Chemistry B, 2017, 5, 5608-5615.	2.9	24
80	Acid and base coexisted heterogeneous catalysts supported on hypercrosslinked polymers for one-pot cascade reactions. Journal of Catalysis, 2017, 348, 168-176.	3.1	64
81	Layered microporous polymers by solvent knitting method. Science Advances, 2017, 3, e1602610.	4.7	135
82	Development of functionalized hollow microporous organic capsules encapsulating morphine – an in vitro and in vivo study. Journal of Materials Chemistry B, 2017, 5, 742-749.	2.9	17
83	Ruthenium Complexes Immobilized on Functionalized Knitted Hypercrosslinked Polymers as Efficient and Recyclable Catalysts for Organic Transformations. Advanced Synthesis and Catalysis, 2017, 359, 78-88.	2.1	47
84	Covalent Triazine Frameworks via a Lowâ€īemperature Polycondensation Approach. Angewandte Chemie, 2017, 129, 14337-14341.	1.6	83
85	Covalent Triazine Frameworks via a Lowâ€Temperature Polycondensation Approach. Angewandte Chemie - International Edition, 2017, 56, 14149-14153.	7.2	441
86	Morphology design of microporous organic polymers and their potential applications: an overview. Science China Chemistry, 2017, 60, 1056-1066.	4.2	36
87	A triptycene-based two-dimensional porous organic polymeric nanosheet. Polymer Chemistry, 2017, 8, 5533-5538.	1.9	32
88	Novel fullerene-based porous materials constructed by a solvent knitting strategy. Chemical Communications, 2017, 53, 12758-12761.	2.2	9
89	Organic Porous Polymer Materials: Design, Preparation, and Applications. Engineering Materials and Processes, 2017, , 71-150.	0.2	1
90	Preparation of Magnetic Iron Oxide Nanoparticles (MIONs) with Improved Saturation Magnetization Using Multifunctional Polymer Ligand. Polymers, 2016, 8, 392.	2.0	43

Bien Tan

#	Article	IF	CITATIONS
91	Design and Utility of Metal/Metal Oxide Nanoparticles Mediated by Thioether End-Functionalized Polymeric Ligands. Polymers, 2016, 8, 156.	2.0	50
92	Fabrication of Hollow Microporous Carbon Spheres from Hyperâ€Crosslinked Microporous Polymers. Small, 2016, 12, 3134-3142.	5.2	64
93	Imine-Linked Polymer Based Nitrogen-Doped Porous Activated Carbon for Efficient and Selective CO2 Capture. Scientific Reports, 2016, 6, 38614.	1.6	52
94	Nitrogen-Rich Triptycene-Based Porous Polymer for Gas Storage and Iodine Enrichment. ACS Macro Letters, 2016, 5, 1039-1043.	2.3	143
95	Solution-processable hypercrosslinked polymers by low cost strategies: a promising platform for gas storage and separation. Journal of Materials Chemistry A, 2016, 4, 15072-15080.	5.2	92
96	Magnetic nanoparticles with multifunctional water-soluble polymers for bioapplications. , 2016, , 485-515.		0
97	Template-mediated Synthesis of Hollow Microporous Organic Nanorods with Tunable Aspect Ratio. Scientific Reports, 2016, 6, 31359.	1.6	29
98	Microporous Polymers from a Carbazoleâ€Based Triptycene Monomer: Synthesis and Their Applications for Gas Uptake. Chemistry - an Asian Journal, 2016, 11, 294-298.	1.7	36
99	Functionalized hypercrosslinked polymers with knitted N-heterocyclic carbene–copper complexes as efficient and recyclable catalysts for organic transformations. Catalysis Science and Technology, 2016, 6, 4345-4355.	2.1	62
100	Microporous Organic Polymers Derived Microporous Carbon Supported Pd Catalysts for Oxygen Reduction Reaction: Impact of Framework and Heteroatom. Journal of Physical Chemistry C, 2016, 120, 2187-2197.	1.5	54
101	Highly active palladium nanoparticles immobilized on knitting microporous organic polymers as efficient catalysts for Suzuki–Miyaura cross-coupling reaction. Journal of Porous Materials, 2016, 23, 725-731.	1.3	17
102	Graphene oxide-polythiophene derivative hybrid nanosheet for enhancing performance of supercapacitor. Journal of Power Sources, 2016, 306, 241-247.	4.0	103
103	Synthesis and properties of organic microporous polymers from the monomer of hexaphenylbenzene based triptycene. Polymer, 2016, 82, 100-104.	1.8	32
104	Methane Storage in a Hydrated Form as Promoted by Leucines for Possible Application to Natural Gas Transportation and Storage. Energy Technology, 2015, 3, 815-819.	1.8	139
105	Hierarchical Porous Polystyrene Monoliths from PolyHIPE. Macromolecular Rapid Communications, 2015, 36, 1553-1558.	2.0	56
106	Surfactant-free CO2-in-water emulsion-templated poly (vinyl alcohol) (PVA) hydrogels. Polymer, 2015, 61, 183-191.	1.8	26
107	Emulsion-templated poly(acrylamide)s by using polyvinyl alcohol (PVA) stabilized CO ₂ -in-water emulsions and their applications in tissue engineering scaffolds. RSC Advances, 2015, 5, 92017-92024.	1.7	19
108	One-pot synthesis of ultra-small magnetite nanoparticles on the surface of reduced graphene oxide nanosheets as anodes for sodium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 4793-4798.	5.2	59

#	Article	lF	CITATIONS
109	Controlled synthesis of uniform palladium nanoparticles on novel micro-porous carbon as a recyclable heterogeneous catalyst for the Heck reaction. Dalton Transactions, 2015, 44, 13906-13913.	1.6	28
110	Highly porous activated carbon materials from carbonized biomass with high CO2 capturing capacity. Chemical Engineering Journal, 2015, 281, 606-612.	6.6	238
111	Knitting hypercrosslinked conjugated microporous polymers with external crosslinker. Polymer, 2015, 70, 336-342.	1.8	77
112	Novel POSS-based organic–inorganic hybrid porous materials by low cost strategies. Journal of Materials Chemistry A, 2015, 3, 6542-6548.	5.2	81
113	A Porous Tricyclooxacalixarene Cage Based on Tetraphenylethylene. Angewandte Chemie - International Edition, 2015, 54, 9244-9248.	7.2	127
114	Triptycene-Based Hyper-Cross-Linked Polymer Sponge for Gas Storage and Water Treatment. Macromolecules, 2015, 48, 8509-8514.	2.2	178
115	Palladium catalyst coordinated in knitting N-heterocyclic carbene porous polymers for efficient Suzuki–Miyaura coupling reactions. Journal of Materials Chemistry A, 2015, 3, 1272-1278.	5.2	155
116	Research Progress in Hypercrosslinked Microporous Organic Polymers. Acta Chimica Sinica, 2015, 73, 530.	0.5	26
117	Microporous Organic Polymers for Carbon Dioxide Capture. Green Chemistry and Sustainable Technology, 2014, , 143-180.	0.4	3
118	Methane storage in tea clathrates. Chemical Communications, 2014, 50, 1244-1246.	2.2	21
119	Multifunctional microporous organic polymers. Journal of Materials Chemistry A, 2014, 2, 11930.	5.2	157
120	A highly efficient catalyst for Suzuki–Miyaura coupling reaction of benzyl chloride under mild conditions. RSC Advances, 2014, 4, 36437-36443.	1.7	24
121	Triptycene-based microporous polyimides: Synthesis and their high selectivity for CO2 capture. Polymer, 2014, 55, 3642-3647.	1.8	55
122	Nitrogen-doped activated carbons derived from a co-polymer for high supercapacitor performance. Journal of Materials Chemistry A, 2014, 2, 11697-11705.	5.2	94
123	Hollow Microporous Organic Capsules Loaded with Highly Dispersed Pt Nanoparticles for Catalytic Applications. Macromolecular Chemistry and Physics, 2014, 215, 1257-1263.	1.1	16
124	Synthesis of a CO2-philic poly(vinyl acetate)-based cationic amphiphilic surfactant by RAFT/ATRP and its application in preparing monolithic materials. Green Chemistry, 2014, 16, 4408-4416.	4.6	21
125	Ultra-small fluorescent inorganic nanoparticles for bioimaging. Journal of Materials Chemistry B, 2014, 2, 2793-2818.	2.9	104
126	Design of a polymer ligand for the one-step preparation of highly stable fluorescent Ag5 clusters for tissue labeling. Journal of Materials Chemistry B, 2013, 1, 3999.	2.9	12

#	Article	IF	CITATIONS
127	Hollow Microporous Organic Capsules. Scientific Reports, 2013, 3, 2128.	1.6	102
128	Synthesis and properties of triptycene-based microporous polymers. Polymer, 2013, 54, 6942-6946.	1.8	31
129	Functional oligo(vinyl acetate) bearing bipyridine moieties by RAFT polymerization and extraction of metal ions in supercritical carbon dioxide. Polymer Chemistry, 2013, 4, 3507.	1.9	20
130	Effect of polymer ligand structures on fluorescence of gold clusters prepared by photoreduction. Nanoscale, 2013, 5, 1986.	2.8	45
131	Magnetic microporous polymer nanoparticles. Polymer Chemistry, 2013, 4, 1425-1429.	1.9	27
132	Microporous organic polymers synthesized by self-condensation of aromatic hydroxymethyl monomers. Polymer Chemistry, 2013, 4, 1126-1131.	1.9	114
133	Synthesis of oligomer vinyl acetate with different topologies by RAFT/MADIX method and their phase behaviour in supercritical carbon dioxide. Polymer, 2013, 54, 5303-5309.	1.8	16
134	Recent Development of Hypercrosslinked Microporous Organic Polymers. Macromolecular Rapid Communications, 2013, 34, 471-484.	2.0	360
135	Urchin-like cobalt incorporated manganese oxide OMS-2 hollow spheres: Synthesis, characterization and catalytic degradation of RhB dye. Solid State Sciences, 2013, 15, 66-72.	1.5	19
136	Organic microporous polymer from a hexaphenylbenzene based triptycene monomer: synthesis and its gas storage properties. Polymer Chemistry, 2013, 4, 3663.	1.9	41
137	Highly water-soluble magnetic iron oxide (Fe3O4) nanoparticles for drug delivery: enhanced in vitro therapeutic efficacy of doxorubicin and MION conjugates. Journal of Materials Chemistry B, 2013, 1, 2874.	2.9	92
138	Triptycene-Based Microporous Polymers: Synthesis and Their Gas Storage Properties. ACS Macro Letters, 2012, 1, 190-193.	2.3	135
139	Photoreductive synthesis of water-soluble fluorescent metal nanoclusters. Chemical Communications, 2012, 48, 567-569.	2.2	133
140	Polymer–inorganic hybrid microparticles with hierarchical structures formed by interfacial instabilities of emulsion droplets. Soft Matter, 2012, 8, 2697.	1.2	13
141	Fabrication of cross-like NH4V4O10 nanobelt array controlled by CMC as soft template and photocatalytic activity of its calcinated product. Chemical Engineering Journal, 2012, 209, 245-254.	6.6	40
142	Hypercrosslinked Aromatic Heterocyclic Microporous Polymers: A New Class of Highly Selective CO ₂ Capturing Materials. Advanced Materials, 2012, 24, 5703-5707.	11.1	424
143	Heterocyclic Microporous Polymers: Hypercrosslinked Aromatic Heterocyclic Microporous Polymers: A New Class of Highly Selective CO2Capturing Materials (Adv. Mater. 42/2012). Advanced Materials, 2012, 24, 5702-5702.	11.1	3
144	Facile Preparation of Highly Blue Fluorescent Metal Nanoclusters in Organic Media. Journal of Physical Chemistry C, 2012, 116, 448-455.	1.5	36

#	Article	IF	CITATIONS
145	Catalyzed hydrogen spillover for hydrogen storage on microporous organic polymers. International Journal of Hydrogen Energy, 2012, 37, 12813-12820.	3.8	25
146	Highly Dispersed Pd Catalyst Locked in Knitting Aryl Network Polymers for Suzuki–Miyaura Coupling Reactions of Aryl Chlorides in Aqueous Media. Advanced Materials, 2012, 24, 3390-3395.	11.1	286
147	Phase transitions and hard magnetic properties for rapidly solidified MnAl alloys doped with C, B, and rare earth elements. Journal of Materials Science, 2012, 47, 2333-2338.	1.7	78
148	Biolabeling Hematopoietic System Cells Using Near-Infrared Fluorescent Gold Nanoclusters. Journal of Physical Chemistry C, 2011, 115, 16753-16763.	1.5	67
149	A New Strategy to Microporous Polymers: Knitting Rigid Aromatic Building Blocks by External Cross-Linker. Macromolecules, 2011, 44, 2410-2414.	2.2	530
150	Tailoring the pore size of hypercrosslinked polymers. Soft Matter, 2011, 7, 10910.	1.2	75
151	Synthesis of cost-effective porous polyimides and their gas storage properties. Chemical Communications, 2011, 47, 7704.	2.2	99
152	Facile preparation of size-controlled gold nanoparticles using versatile and end-functionalized thioether polymer ligands. Nanoscale, 2011, 3, 1600.	2.8	37
153	Hypercrosslinked microporous polymer networks for effective removal of toxic metal ions from water. Microporous and Mesoporous Materials, 2011, 138, 207-214.	2.2	129
154	Synthesis of CO2-philic Xanthateâ^'Oligo(vinyl acetate)-Based Hydrocarbon Surfactants by RAFT Polymerization and Their Applications on Preparation of Emulsion-Templated Materials. Macromolecules, 2010, 43, 9355-9364.	2.2	39
155	Polymer CO ₂ Solubility. Structure/Property Relationships in Polyester Libraries. Macromolecules, 2010, 43, 9426-9433.	2.2	29
156	Tröger's base-functionalised organic nanoporous polymer for heterogeneous catalysis. Chemical Communications, 2010, 46, 970-972.	2.2	221
157	Synthesis of uniform microporous polymer nanoparticles and their applications for hydrogen storage. Journal of Materials Chemistry, 2010, 20, 7444.	6.7	98
158	Emulsion-Templated Porous Materials Using Concentrated Carbon Dioxide-in-Water Emulsions and Inexpensive Hydrocarbon Surfactants. ACS Symposium Series, 2009, , 243-258.	0.5	0
159	Fractionation of Poly(vinyl acetate) and the Phase Behavior of End-Group Modified Oligo(vinyl) Tj ETQq1 1	0.784314 rgBT / 2.2	Oygrlock 10
160	Direct Coprecipitation Route to Monodisperse Dualâ€Functionalized Magnetic Iron Oxide Nanocrystals Without Size Selection. Small, 2008, 4, 231-239.	5.2	137
161	Microporous Organic Polymers for Methane Storage. Advanced Materials, 2008, 20, 1916-1921.	11.1	351
162	Rapid and Reversible Hydrogen Storage in Clathrate Hydrates Using Emulsionâ€Templated Polymers. Advanced Materials, 2008, 20, 2663-2666.	11.1	93

Bien Tan

#	Article	IF	CITATIONS
163	Formation and enhanced biocidal activity of water-dispersable organic nanoparticles. Nature Nanotechnology, 2008, 3, 506-511.	15.6	135
164	Size and shape control for water-soluble magnetic cobalt nanoparticles using polymer ligands. Journal of Materials Chemistry, 2008, 18, 2453.	6.7	63
165	Fluorescent or not? Size-dependent fluorescence switching for polymer-stabilized gold clusters in the 1.1–1.7 nm size range. Chemical Communications, 2008, , 3986.	2.2	108
166	Synthesis of Emulsion-Templated Poly(acrylamide) Using CO2-in-Water Emulsions and Poly(vinyl) Tj ETQq0 0 0 rg	gBT /Overlo	pcg_{3}^{10} Tf 50

167	CO2-in-Water Emulsion-Templated Poly(vinyl alcohol) Hydrogels Using Poly(vinyl acetate)-Based Surfactants. Macromolecules, 2007, 40, 1955-1961.	2.2	79
168	Hydrogen Storage in Microporous Hypercrosslinked Organic Polymer Networks. Chemistry of Materials, 2007, 19, 2034-2048.	3.2	618
169	Design of Polymeric Stabilizers for Size-Controlled Synthesis of Monodisperse Gold Nanoparticles in Water. Langmuir, 2007, 23, 885-895.	1.6	158
170	Supercritical Carbon Dioxide as a Green Solvent for Polymer Synthesis. , 2007, , 383-396.		10
171	Strategies for the analysis of poly(methacrylic acid) by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Journal of the American Society for Mass Spectrometry, 2007, 18, 1507-1510.	1.2	14
172	Ionic Hydrocarbon Surfactants for Emulsification and Dispersion Polymerization in Supercritical CO2. Macromolecules, 2006, 39, 7471-7473.	2.2	28
173	Synthesis of Porous Materials via Multiscale Templating Approaches: Emulsions, Nanoparticles, Supercritical Fluids, and Directional Freezing. Materials Research Society Symposia Proceedings, 2006, 988, 1.	0.1	0
174	Size-Controlled Synthesis of Near-Monodisperse Gold Nanoparticles in the 1â^'4 nm Range Using Polymeric Stabilizers. Journal of the American Chemical Society, 2005, 127, 16398-16399.	6.6	331
175	Concentrated emulsion polymerization of methyl methacrylate/butyl acrylate initiated by a redox system. Journal of Applied Polymer Science, 2005, 97, 1695-1701.	1.3	4
176	High-throughput solubility measurements of polymer libraries in supercritical carbon dioxide. Journal of Materials Chemistry, 2005, 15, 456.	6.7	24
177	Synthesis and CO2Solubility Studies of Poly(ether carbonate)s and Poly(ether ester)s Produced by Step Growth Polymerization. Macromolecules, 2005, 38, 1691-1698.	2.2	39
178	Functional Oligo(vinyl acetate) CO2-philes for Solubilization and Emulsification. Journal of the American Chemical Society, 2005, 127, 8938-8939.	6.6	54
179	Synthesis of ultraviolet-curable modified polysiloxane and its surface properties. Journal of Applied Polymer Science, 2002, 86, 2135-2139.	1.3	6
180	Miniemulsion copolymerization of styrene and butyl acrylate initiated by redox system at lower temperature: Reaction kinetics and evolution of particle-size distribution. Journal of Applied Polymer Science, 1999, 73, 315-322.	1.3	14

#	Article	IF	CITATIONS
181	Miniemulsion copolymerization of styrene and butyl acrylate initiated by redox system at lower temperature-preparation and polymerization of miniemulsion. Journal of Applied Polymer Science, 1998, 68, 2029-2039.	1.3	33