
## Karisa C Schreck

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1043916/publications.pdf Version: 2024-02-01



KADISA C SCHDECK

| #  | Article                                                                                                                                                                                  | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | High-grade glioma therapy: adding flexibility in trial design to improve patient outcomes. Expert<br>Review of Anticancer Therapy, 2022, 22, 275-287.                                    | 1.1 | 3         |
| 2  | Targeting farnesylation as a novel therapeutic approach in HRAS-mutant rhabdomyosarcoma.<br>Oncogene, 2022, 41, 2973-2983.                                                               | 2.6 | 9         |
| 3  | BIMG-23. SINGLE-VOXEL VERSUS MULTI-SLICE MRSI IN PATIENTS WITH GLIOMA ON A KETOGENIC DIET INTERVENTION. Neuro-Oncology Advances, 2021, 3, i6-i6.                                         | 0.4 | 0         |
| 4  | DDRE-31. FEASIBILITY AND BIOLOGIC ACTIVITY OF A KETOGENIC / INTERMITTENT FASTING DIET IN GLIOMA PATIENTS. Neuro-Oncology Advances, 2021, 3, i13-i13.                                     | 0.4 | 0         |
| 5  | Feasibility and Biological Activity of a Ketogenic/Intermittent-Fasting Diet in Patients With Glioma.<br>Neurology, 2021, 97, e953-e963.                                                 | 1.5 | 18        |
| 6  | Predicting BRAF V600E mutation in glioblastoma: utility of radiographic features. Brain Tumor<br>Pathology, 2021, 38, 228-233.                                                           | 1.1 | 9         |
| 7  | ECOA-10. Integrated genomic and clinical analysis of BRAF-mutated glioma in adults. Neuro-Oncology<br>Advances, 2021, 3, ii3-ii3.                                                        | 0.4 | 0         |
| 8  | Pembrolizumab for patients with leptomeningeal metastasis from solid tumors: efficacy, safety, and cerebrospinal fluid biomarkers. , 2021, 9, e002473.                                   |     | 33        |
| 9  | Subgroup and subtype-specific outcomes in adult medulloblastoma. Acta Neuropathologica, 2021, 142, 859-871.                                                                              | 3.9 | 34        |
| 10 | Deconvoluting Mechanisms of Acquired Resistance to RAF Inhibitors in BRAFV600E-Mutant Human<br>Glioma. Clinical Cancer Research, 2021, 27, 6197-6208.                                    | 3.2 | 20        |
| 11 | Combination MEK and mTOR inhibitor therapy is active in models of glioblastoma. Neuro-Oncology<br>Advances, 2020, 2, vdaa138.                                                            | 0.4 | 14        |
| 12 | RAF and MEK inhibitor therapy in adult patients with brain tumors: a case-based overview and practical management of adverse events. Neuro-Oncology Practice, 2020, 7, 369-375.          | 1.0 | 2         |
| 13 | Optimizing eligibility criteria and clinical trial conduct to enhance clinical trial participation for primary brain tumor patients. Neuro-Oncology, 2020, 22, 601-612.                  | 0.6 | 23        |
| 14 | Anti-PD-1 for patients with leptomeningeal metastasis from advanced solid tumors: Efficacy, safety,<br>and biomarkers of response Journal of Clinical Oncology, 2020, 38, e14506-e14506. | 0.8 | 1         |
| 15 | PATH-26. INTEGRATED MOLECULAR AND CLINICAL ANALYSIS OF BRAF-MUTATED GLIOMA IN ADULTS.<br>Neuro-Oncology, 2020, 22, ii169-ii170.                                                          | 0.6 | 0         |
| 16 | DDRE-13. DECONVOLUTING MECHANISMS OF RESISTANCE TO BRAF INHIBITORS IN BRAF V600E HUMAN<br>GLIOMA. Neuro-Oncology, 2020, 22, ii64-ii64.                                                   | 0.6 | 0         |
| 17 | BRAF Mutations and the Utility of RAF and MEK Inhibitors in Primary Brain Tumors. Cancers, 2019, 11, 1262.                                                                               | 1.7 | 99        |
| 18 | Incidence and clinicopathologic features of H3 K27M mutations in adults with radiographically-determined midline gliomas. Journal of Neuro-Oncology, 2019, 143, 87-93.                   | 1.4 | 68        |

| #  | Article                                                                                                                                                                                       | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | EXTH-39. BENCH TO BEDSIDE NEURO-ONCOLOGY: ADVOCATING FOR A CLINICALLY RELEVANT STRATEGY.<br>Neuro-Oncology, 2019, 21, vi90-vi90.                                                              | 0.6 | Ο         |
| 20 | ACTR-44. FEASIBILITY, PHARMACODYNAMICS, AND BIOLOGIC ACTIVITY OF THE GLIOMA ATKINS-BASED DIET (GLAD) FOR PREVENTING TUMOR RECURRENCE IN GLIOMA PATIENTS. Neuro-Oncology, 2019, 21, vi23-vi23. | 0.6 | 0         |
| 21 | Cerebral Ketones Detected by 3T MR Spectroscopy in Patients with High-Grade Glioma on an Atkins-Based Diet. American Journal of Neuroradiology, 2019, 40, 1908-1915.                          | 1.2 | 6         |
| 22 | Effect of ketogenic diets on leukocyte counts in patients with epilepsy. Nutritional Neuroscience, 2019, 22, 522-527.                                                                         | 1.5 | 12        |
| 23 | Concurrent BRAF/MEK Inhibitors in <i>BRAF</i> V600–Mutant High-Grade Primary Brain Tumors.<br>Journal of the National Comprehensive Cancer Network: JNCCN, 2018, 16, 343-347.                 | 2.3 | 46        |
| 24 | PATH-28. THE NATURAL HISTORY OF BRAF V600E-MUTATED GLIOBLASTOMAS IN ADULTS. Neuro-Oncology, 2018, 20, vi164-vi164.                                                                            | 0.6 | 2         |
| 25 | Point/counterpoint: randomized versus single-arm phase II clinical trials for patients with newly diagnosed glioblastoma. Neuro-Oncology, 2017, 19, 469-474.                                  | 0.6 | 34        |
| 26 | Neurosarcoidosis Presenting With Recurrent Strokes. Neurohospitalist, The, 2017, 7, 91-95.                                                                                                    | 0.3 | 7         |
| 27 | Clinical Reasoning: A 70-year-old woman with acute-onset weakness and progressive hemiataxia.<br>Neurology, 2016, 87, e264-e268.                                                              | 1.5 | 5         |
| 28 | Clinical Reasoning: A 44-year-old woman with rapidly progressive weakness and ophthalmoplegia.<br>Neurology, 2015, 85, e22-7.                                                                 | 1.5 | 2         |
| 29 | Notch Signaling Activation in Pediatric Low-Grade Astrocytoma. Journal of Neuropathology and Experimental Neurology, 2015, 74, 121-131.                                                       | 0.9 | 6         |
| 30 | Clinical response to bevacizumab in schwannomatosis. Neurology, 2014, 83, 1986-1987.                                                                                                          | 1.5 | 33        |
| 31 | A glioblastoma neurosphere line with alternative lengthening of telomeres. Acta Neuropathologica, 2013, 126, 607-608.                                                                         | 3.9 | 9         |
| 32 | Notch Signaling Promotes Growth and Invasion in Uveal Melanoma. Clinical Cancer Research, 2012, 18, 654-665.                                                                                  | 3.2 | 63        |
| 33 | Notch3 Activation Promotes Invasive Glioma Formation in a Tissue Site-Specific Manner. Cancer Research, 2011, 71, 1115-1125.                                                                  | 0.4 | 32        |
| 34 | Abstract 1415: The Notch ligand Jag 2 promotes growth and invasion in uveal melanoma cells. Cancer Research, 2011, 71, 1415-1415.                                                             | 0.4 | 1         |
| 35 | The exon junction complex component Magoh controls brain size by regulating neural stem cell division. Nature Neuroscience, 2010, 13, 551-558.                                                | 7.1 | 156       |
| 36 | The Notch Target Hes1 Directly Modulates Gli1 Expression and Hedgehog Signaling: A Potential<br>Mechanism of Therapeutic Resistance. Clinical Cancer Research, 2010, 16, 6060-6070.           | 3.2 | 146       |

KARISA C SCHRECK

| #  | Article                                                                                                                               | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Abstract 4141: Notch signaling: A new potential target in the treatment of uveal melanoma. , 2010, , .                                |     | 1         |
| 38 | PML: a tumor suppressor essential for neocortical development. Nature Neuroscience, 2009, 12, 108-110.                                | 7.1 | 6         |
| 39 | Notch, Neural Stem Cells, and Brain Tumors. Cold Spring Harbor Symposia on Quantitative Biology, 2008, 73, 367-375.                   | 2.0 | 66        |
| 40 | Cyclopamine-Mediated Hedgehog Pathway Inhibition Depletes Stem-Like Cancer Cells in Glioblastoma.<br>Stem Cells, 2007, 25, 2524-2533. | 1.4 | 578       |