
## Lourdes Pelaz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1043808/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                          | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Ion-beam-induced amorphization and recrystallization in silicon. Journal of Applied Physics, 2004, 96, 5947-5976.                                                | 1.1 | 327       |
| 2  | B cluster formation and dissolution in Si: A scenario based on atomistic modeling. Applied Physics<br>Letters, 1999, 74, 3657-3659.                              | 1.5 | 149       |
| 3  | Stability of defects in crystalline silicon and their role in amorphization. Physical Review B, 2001, 64, .                                                      | 1.1 | 105       |
| 4  | Atomistic modeling of amorphization and recrystallization in silicon. Applied Physics Letters, 2003, 82, 2038-2040.                                              | 1.5 | 70        |
| 5  | Atomistic Modeling of Point and Extended Defects in Crystalline Materials. Materials Research Society<br>Symposia Proceedings, 1998, 532, 43.                    | 0.1 | 69        |
| 6  | Microscopic Description of the Irradiation-Induced Amorphization in Silicon. Physical Review Letters, 2003, 91, 135504.                                          | 2.9 | 61        |
| 7  | Activation and deactivation of implanted B in Si. Applied Physics Letters, 1999, 75, 662-664.                                                                    | 1.5 | 60        |
| 8  | Modeling of the ion mass effect on transient enhanced diffusion: Deviation from the "+1―model.<br>Applied Physics Letters, 1998, 73, 1421-1423.                  | 1.5 | 58        |
| 9  | Molecular dynamics study of the configurational and energetic properties of the silicon self-interstitial. Physical Review B, 2005, 71, .                        | 1.1 | 55        |
| 10 | Boron diffusion in amorphous silicon and the role of fluorine. Applied Physics Letters, 2004, 84, 4283-4285.                                                     | 1.5 | 47        |
| 11 | Modeling of the effects of dose, dose rate, and implant temperature on transient enhanced diffusion.<br>Applied Physics Letters, 1999, 74, 2017-2019.            | 1.5 | 43        |
| 12 | Atomistic modeling of deactivation and reactivation mechanisms in high-concentration boron profiles. Applied Physics Letters, 2003, 83, 4166-4168.               | 1.5 | 34        |
| 13 | Atomistic analysis of the evolution of boron activation during annealing in crystalline and preamorphized silicon. Journal of Applied Physics, 2005, 97, 103520. | 1.1 | 34        |
| 14 | Modeling of damage generation mechanisms in silicon at energies below the displacement threshold.<br>Physical Review B, 2006, 74, .                              | 1.1 | 34        |
| 15 | Front-end process modeling in silicon. European Physical Journal B, 2009, 72, 323-359.                                                                           | 0.6 | 32        |
| 16 | Atomistic analysis of defect evolution and transient enhanced diffusion in silicon. Journal of Applied Physics, 2003, 94, 1013-1018.                             | 1.1 | 30        |
| 17 | Characterization of octadecaborane implantation into Si using molecular dynamics. Physical Review B, 2006, 74, .                                                 | 1.1 | 24        |
| 18 | The laser annealing induced phase transition in silicon: a molecular dynamics study. Nuclear<br>Instruments & Methods in Physics Research B, 2004, 216, 57-61.   | 0.6 | 23        |

| #  | Article                                                                                                                                                                                                  | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Physical insight into boron activation and redistribution during annealing after low-temperature solid phase epitaxial regrowth. Applied Physics Letters, 2006, 88, 191917.                              | 1.5 | 22        |
| 20 | Improved atomistic damage generation model for binary collision simulations. Journal of Applied Physics, 2009, 105, 083530.                                                                              | 1.1 | 22        |
| 21 | Kinetics of large B clusters in crystalline and preamorphized silicon. Journal of Applied Physics, 2011, 110, .                                                                                          | 1.1 | 22        |
| 22 | Atomistic modeling of dopant implantation and annealing in Si: damage evolution, dopant diffusion and activation. Computational Materials Science, 2005, 33, 92-105.                                     | 1.4 | 21        |
| 23 | Molecular dynamics simulations of damage production by thermal spikes in Ge. Journal of Applied Physics, 2012, 111, 033519.                                                                              | 1.1 | 21        |
| 24 | Enhanced low temperature electrical activation of B in Si. Applied Physics Letters, 2003, 82, 215-217.                                                                                                   | 1.5 | 19        |
| 25 | The curious case of thin-body Ge crystallization. Applied Physics Letters, 2011, 99, 131910.                                                                                                             | 1.5 | 19        |
| 26 | Dose, Energy, and Ion Species Dependence of the Effective Plus Factor for Transient Enhanced<br>Diffusion. Journal of the Electrochemical Society, 2000, 147, 3494.                                      | 1.3 | 18        |
| 27 | Binding energy of vacancy clusters generated by high-energy ion implantation and annealing of silicon. Applied Physics Letters, 2001, 79, 1273-1275.                                                     | 1.5 | 18        |
| 28 | Recrystallization of atomically balanced amorphous pockets in Si: A source of point defects. Physical<br>Review B, 2007, 76, .                                                                           | 1.1 | 18        |
| 29 | Kinetic Monte Carlo simulations for transient thermal fields: Computational methodology and application to the submicrosecond laser processes in implanted silicon. Physical Review E, 2012, 86, 036705. | 0.8 | 18        |
| 30 | Modeling of defects, dopant diffusion and clustering in silicon. Journal of Computational Electronics, 2014, 13, 40-58.                                                                                  | 1.3 | 18        |
| 31 | Role of silicon interstitials in boron cluster dissolution. Applied Physics Letters, 2005, 86, 031908.                                                                                                   | 1.5 | 16        |
| 32 | Elucidating the atomistic mechanisms driving self-diffusion of amorphous Si during annealing.<br>Physical Review B, 2011, 83, .                                                                          | 1.1 | 16        |
| 33 | Molecular dynamics characterization of as-implanted damage in silicon. Materials Science and<br>Engineering B: Solid-State Materials for Advanced Technology, 2005, 124-125, 372-375.                    | 1.7 | 15        |
| 34 | The Poole-Frenkel effect in 6H-SiC diode characteristics. IEEE Transactions on Electron Devices, 1994, 41, 587-591.                                                                                      | 1.6 | 14        |
| 35 | Atomistic analysis of the annealing behavior of amorphous regions in silicon. Journal of Applied<br>Physics, 2007, 101, 093518.                                                                          | 1.1 | 14        |
| 36 | Kinetic Monte Carlo simulations of boron activation in implanted Si under laser thermal annealing.<br>Applied Physics Express, 2014, 7, 021301.                                                          | 1.1 | 14        |

| #  | Article                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Structural transformations from point to extended defects in silicon: A molecular dynamics study.<br>Physical Review B, 2008, 78, .                                                                                                   | 1.1 | 13        |
| 38 | Insights on the atomistic origin of X and W photoluminescence lines in <i>c</i> -Si from <i>ab<br/>initio</i> simulations. Journal Physics D: Applied Physics, 2016, 49, 075109.                                                      | 1.3 | 10        |
| 39 | Continuum treatment of spatial correlation in damage annealing. Nuclear Instruments & Methods in Physics Research B, 1999, 153, 172-176.                                                                                              | 0.6 | 9         |
| 40 | Boron activation and redistribution during thermal treatments after solid phase epitaxial regrowth.<br>Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2005, 124-125,<br>205-209.                 | 1.7 | 9         |
| 41 | Boron pocket and channel deactivation in nMOS transistors with SPER junctions. IEEE Transactions on Electron Devices, 2006, 53, 71-77.                                                                                                | 1.6 | 9         |
| 42 | Self-trapping in B-doped amorphous Si: Intrinsic origin of low acceptor efficiency. Physical Review B, 2010, 81, .                                                                                                                    | 1.1 | 9         |
| 43 | Molecular dynamics simulation of the regrowth of nanometric multigate Si devices. Journal of Applied Physics, 2012, 111, 034302.                                                                                                      | 1.1 | 9         |
| 44 | Atomistic simulations in Si processing: Bridging the gap between atoms and experiments. Materials<br>Science and Engineering B: Solid-State Materials for Advanced Technology, 2005, 124-125, 72-80.                                  | 1.7 | 8         |
| 45 | Atomistic modeling of impurity ion implantation in ultra-thin-body Si devices. , 2008, , .                                                                                                                                            |     | 8         |
| 46 | Monte Carlo modeling of amorphization resulting from ion implantation in Si. Computational Materials Science, 2003, 27, 1-5.                                                                                                          | 1.4 | 7         |
| 47 | Atomistic modeling of defect evolution in Si for amorphizing and subamorphizing implants. Materials<br>Science and Engineering B: Solid-State Materials for Advanced Technology, 2004, 114-115, 82-87.                                | 1.7 | 7         |
| 48 | Evolution of boron-interstitial clusters in preamorphized silicon without the contribution of<br>end-of-range defects. Materials Science and Engineering B: Solid-State Materials for Advanced<br>Technology, 2008, 154-155, 247-251. | 1.7 | 7         |
| 49 | Atomistic process modeling based on Kinetic Monte Carlo and Molecular Dynamics for optimization of advanced devices. , 2009, , .                                                                                                      |     | 7         |
| 50 | Molecular dynamics simulation of the early stages of self-interstitial clustering in silicon. Materials<br>Science in Semiconductor Processing, 2016, 42, 235-238.                                                                    | 1.9 | 7         |
| 51 | W and X Photoluminescence Centers in Crystalline Si: Chasing Candidates at Atomic Level Through<br>Multiscale Simulations. Journal of Electronic Materials, 2018, 47, 5045-5049.                                                      | 1.0 | 7         |
| 52 | Avalanche breakdown of high-voltage p-n junctions of SiC. Microelectronics Journal, 1996, 27, 43-51.                                                                                                                                  | 1.1 | 6         |
| 53 | Atomistic Modeling of Complex Silicon Processing Scenarios. Materials Research Society Symposia<br>Proceedings, 2000, 610, 1111.                                                                                                      | 0.1 | 6         |
| 54 | Molecular dynamics study of amorphous pocket formation in Si at low energies and its application to<br>improve binary collision models. Nuclear Instruments & Methods in Physics Research B, 2007, 255,<br>110-113.                   | 0.6 | 6         |

| #  | Article                                                                                                                                                                                                                                                                                                                | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | ultrafast Generation of Unconventional <mmi:math<br>xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"&gt;<mml:mrow><mml:mo<br>stretchy="false"&gt;{<mml:mn>001</mml:mn><mml:mo<br>stretchy="false"&gt;}</mml:mo<br></mml:mo<br></mml:mrow>Loops in Si. Physical Review Letters, 2017, 119,</mmi:math<br> | 2.9 | 6         |
| 56 | Low energy ion implantation simulation using a modified binary collision approximation code. Nuclear Instruments & Methods in Physics Research B, 1995, 102, 228-231.                                                                                                                                                  | 0.6 | 5         |
| 57 | Atomistic modeling of the effects of dose and implant temperature on dopant diffusion and amorphization in Si. Nuclear Instruments & Methods in Physics Research B, 2001, 180, 12-16.                                                                                                                                  | 0.6 | 5         |
| 58 | A novel technique for the structural and energetic characterization of lattice defects in the molecular dynamics framework. Computational Materials Science, 2005, 33, 112-117.                                                                                                                                        | 1.4 | 5         |
| 59 | Molecular dynamics study of damage generation mechanisms in silicon at the low energy regime. , 2007, , .                                                                                                                                                                                                              |     | 5         |
| 60 | Improved physical models for advanced silicon device processing. Materials Science in Semiconductor Processing, 2017, 62, 62-79.                                                                                                                                                                                       | 1.9 | 5         |
| 61 | Detailed computer simulation of ion implantation processes into crystals. Materials Science and Technology, 1995, 11, 1191-1193.                                                                                                                                                                                       | 0.8 | 4         |
| 62 | The role of the bond defect on silicon amorphization: a molecular dynamics study. Computational<br>Materials Science, 2003, 27, 6-9.                                                                                                                                                                                   | 1.4 | 4         |
| 63 | The role of silicon interstitials in the deactivation and reactivation of high concentration boron<br>profiles. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2004,<br>114-115, 193-197.                                                                                         | 1.7 | 4         |
| 64 | Amorphous layer depth dependence on implant parameters during Si self-implantation. Materials<br>Science and Engineering B: Solid-State Materials for Advanced Technology, 2005, 124-125, 379-382.                                                                                                                     | 1.7 | 4         |
| 65 | Codiffusion of Phosphorus and Carbon in Preamorphized Ultrashallow Junctions. Electrochemical and Solid-State Letters, 2012, 15, H202.                                                                                                                                                                                 | 2.2 | 4         |
| 66 | {001} loops in silicon unraveled. Acta Materialia, 2019, 166, 192-201.                                                                                                                                                                                                                                                 | 3.8 | 4         |
| 67 | On the anomalous generation of {0 0 1} loops during laser annealing of ion-implanted silicon. Nuclear<br>Instruments & Methods in Physics Research B, 2019, 458, 179-183.                                                                                                                                              | 0.6 | 4         |
| 68 | Generation of amorphous Si structurally compatible with experimental samples through the<br>quenching process: A systematic molecular dynamics simulation study. Journal of Non-Crystalline<br>Solids, 2019, 503-504, 20-27.                                                                                           | 1.5 | 4         |
| 69 | Atomistic modeling of ion beam induced amorphization in silicon. Nuclear Instruments & Methods in Physics Research B, 2004, 216, 41-45.                                                                                                                                                                                | 0.6 | 3         |
| 70 | Boron diffusion and activation in SOI and bulk Si: The role of the buried interface. Nuclear<br>Instruments & Methods in Physics Research B, 2007, 257, 152-156.                                                                                                                                                       | 0.6 | 3         |
| 71 | Evolution of fluorine and boron profiles during annealing in crystalline Si. Journal of Vacuum<br>Science & Technology B, 2008, 26, 377.                                                                                                                                                                               | 1.3 | 3         |
| 72 | Simulation of p-n junctions: Present and future challenges for technologies beyond 32 nm. Journal of<br>Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2010, 28, C1A1-C1A6.                                                                                                                      | 0.6 | 3         |

| #  | Article                                                                                                                                                                                                | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | A detailed approach for the classification and statistical analysis of irradiation induced defects.<br>Nuclear Instruments & Methods in Physics Research B, 2015, 352, 156-159.                        | 0.6 | 3         |
| 74 | Atomistic simulations of acceptor removal in p-type Si irradiated with neutrons. Nuclear Instruments<br>& Methods in Physics Research B, 2022, 512, 42-48.                                             | 0.6 | 3         |
| 75 | Saturation of generationâ€recombination current for very small recombination times. Journal of Applied Physics, 1994, 76, 7384-7389.                                                                   | 1.1 | 2         |
| 76 | Use of transient enhanced diffusion to tailor boron out-diffusion. IEEE Transactions on Electron Devices, 2000, 47, 1401-1405.                                                                         | 1.6 | 2         |
| 77 | Modeling of Dopant and Defect Interactions in Si Process Simulators. Defect and Diffusion Forum, 2003, 221-223, 31-40.                                                                                 | 0.4 | 2         |
| 78 | Atomistic Analysis of the Role of Silicon Interstitials in Boron Cluster Dissolution. Materials<br>Research Society Symposia Proceedings, 2004, 810, 334.                                              | 0.1 | 2         |
| 79 | Atomistic modeling of ion beam induced amorphization in silicon. Nuclear Instruments & Methods in Physics Research B, 2005, 241, 501-505.                                                              | 0.6 | 2         |
| 80 | Multiscale modeling of radiation damage and annealing in Si. Nuclear Instruments & Methods in Physics Research B, 2007, 255, 95-100.                                                                   | 0.6 | 2         |
| 81 | Molecular dynamics study of B18H22 cluster implantation into silicon. Nuclear Instruments & Methods in Physics Research B, 2007, 255, 242-246.                                                         | 0.6 | 2         |
| 82 | Molecular implants and cold implants: Two new strategies for junction formation of future Si<br>devices. , 2011, , .                                                                                   |     | 2         |
| 83 | On the Forward Conduction Mechanisms in SiC P-N Junctions. Materials Research Society Symposia<br>Proceedings, 1994, 339, 151.                                                                         | 0.1 | 1         |
| 84 | Atomistic modeling of B activation and deactivation for ultra-shallow junction formation. , 2003, , .                                                                                                  |     | 1         |
| 85 | Atomistic analysis of annealing behavior of amorphous regions. , 0, , .                                                                                                                                |     | 1         |
| 86 | Atomistic Simulation of Damage Accumulation during Shallow B and As Implant into Si. , 2007, , .                                                                                                       |     | 1         |
| 87 | Atomistic modeling of FnVm complexes in pre-amorphized Si. Materials Science and Engineering B:<br>Solid-State Materials for Advanced Technology, 2008, 154-155, 207-210.                              | 1.7 | 1         |
| 88 | Physics Mechanisms Involved in the Formation and Recrystallization of Amorphous Regions in Si<br>through Ion Irradiation. Solid State Phenomena, 2008, 139, 71-76.                                     | 0.3 | 1         |
| 89 | Si interstitial contribution of F+ implants in crystalline Si. Journal of Applied Physics, 2008, 103, .                                                                                                | 1.1 | 1         |
| 90 | Atomistic analysis of B clustering and mobility degradation in highly Bâ€doped junctions. International<br>Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 2010, 23, 266-284. | 1.2 | 1         |

| #   | Article                                                                                                                                                                                                           | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Carrier mobility degradation in highly B-doped junctions. , 2009, , .                                                                                                                                             |     | 1         |
| 92  | Modeling of advanced ion implantation technologies in semiconductors. , 2011, , .                                                                                                                                 |     | 1         |
| 93  | Simulation study of ion implanted defects associated to luminescence centers in silicon. , 2011, , .                                                                                                              |     | 1         |
| 94  | Modeling of defect generation and dissolution in ion implanted semiconductors. , 2011, , .                                                                                                                        |     | 1         |
| 95  | Atomistic modeling of ion implantation technologies in silicon. Nuclear Instruments & Methods in Physics Research B, 2015, 352, 148-151.                                                                          | 0.6 | 1         |
| 96  | Identification of Extended Defect Atomic Configurations in Silicon Through Transmission Electron<br>Microscopy Image Simulation. Journal of Electronic Materials, 2018, 47, 4955-4958.                            | 1.0 | 1         |
| 97  | Extending defect models for Si processing: The role of energy barriers for defect transformation,<br>entropy and coalescence mechanism. Nuclear Instruments & Methods in Physics Research B, 2022, 512,<br>54-59. | 0.6 | 1         |
| 98  | Atomistic Modeling of Amorphization in Silicon. Materials Research Society Symposia Proceedings, 2001, 669, 1.                                                                                                    | 0.1 | 0         |
| 99  | Atomistic Modeling of Ion Beam Induced Defects in Si: From Point Defects to Continuous Amorphous<br>Layers Materials Research Society Symposia Proceedings, 2004, 810, 422.                                       | 0.1 | 0         |
| 100 | Atomistic analysis of the ion beam induced defect evolution. Nuclear Instruments & Methods in Physics Research B, 2004, 216, 100-104.                                                                             | 0.6 | 0         |
| 101 | Morphology of as-implanted damage in silicon: a molecular dynamics study. , 0, , .                                                                                                                                |     | Ο         |
| 102 | Boron redistribution in pre-amorphized Si during thermal annealing. , 0, , .                                                                                                                                      |     | 0         |
| 103 | Study of the amorphous phase of silicon using molecular dynamics simulation techniques. , 0, , .                                                                                                                  |     | Ο         |
| 104 | Boron Electrical Activation in SOI Compared to Bulk Si Substrates. , 2007, , .                                                                                                                                    |     | 0         |
| 105 | Physics based models for process optimization. , 2007, , .                                                                                                                                                        |     | Ο         |
| 106 | Molecular Dynamics Simulation of Octadecaborane Implantation into Silicon. , 2007, , .                                                                                                                            |     | 0         |
| 107 | F+ implants in crystalline Si: the Si interstitial contribution. Materials Research Society Symposia<br>Proceedings, 2008, 1070, 1.                                                                               | 0.1 | 0         |
| 108 | Atomistic Simulation Techniques in Front-End Processing. Materials Research Society Symposia<br>Proceedings, 2008, 1070, 1.                                                                                       | 0.1 | 0         |

| #   | Article                                                                                                                                                                   | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | First Principles Study of Boron in Amorphous Silicon. Materials Research Society Symposia<br>Proceedings, 2008, 1070, 1.                                                  | 0.1 | 0         |
| 110 | Atomistic Modeling of Junction Formation: Tools for Physics Understanding and Process Optimization. ECS Transactions, 2009, 25, 411-418.                                  | 0.3 | 0         |
| 111 | Atomistic simulations of the effect of implant parameters on Si damage. , 2009, , .                                                                                       |     | 0         |
| 112 | Influence of Si surface on damage generation and recombination. , 2009, , .                                                                                               |     | 0         |
| 113 | Atomistic process simulation for future generation nanodevices. , 2011, , .                                                                                               |     | 0         |
| 114 | Kinetic Monte Carlo simulation of dopant-defect systems under submicrosecond laser thermal processes. , 2012, , .                                                         |     | 0         |
| 115 | Preface: 19th International Conference on Ion Implantation Technology. AIP Conference Proceedings, 2012, , .                                                              | 0.3 | 0         |
| 116 | Temperature effect on damage generation mechanisms during ion implantation in Si. A classical molecular dynamics study. AIP Conference Proceedings, 2012, , .             | 0.3 | 0         |
| 117 | Dopant dynamics and defects evolution in implanted silicon under laser irradiations: A coupled continuum and kinetic Monte Carlo approach. , 2013, , .                    |     | 0         |
| 118 | Atomistic study of the anisotropic interaction between extended and point defects in crystalline silicon and its influence on Si self-interstitial diffusion. , 2016, , . |     | 0         |
| 119 | Characterization of amorphous Si generated through classical molecular dynamics simulations. , 2017, , .                                                                  |     | 0         |
| 120 | Modeling SiGe Through Classical Molecular Dynamics Simulations: Chasing an Appropriate Empirical Potential. , 2018, , .                                                   |     | 0         |
| 121 | Atomistic modeling of laser-related phenomena. , 2021, , 79-136.                                                                                                          |     | 0         |
| 122 | The Role of Incomplete Interstitial-Vacancy Recombination on Silicon Amorphization. , 2001, , 26-29.                                                                      |     | 0         |