
Jeffrey A Ranish

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1043779/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	PARK7/DJ-1 promotes pyruvate dehydrogenase activity and maintains Treg homeostasis during ageing. Nature Metabolism, 2022, 4, 589-607.	5.1	18
2	Chromatin-Associated Protein Complexes Link DNA Base J and Transcription Termination in <i>Leishmania</i> . MSphere, 2021, 6, .	1.3	12
3	Proteomic/transcriptomic analysis of erythropoiesis. Current Opinion in Hematology, 2021, 28, 150-157.	1.2	5
4	TAF8 regions important for TFIID lobe B assembly or for TAF2 interactions are required for embryonic stem cell survival. Journal of Biological Chemistry, 2021, 297, 101288.	1.6	4
5	A Structural Model of the Endogenous Human BAF Complex Informs Disease Mechanisms. Cell, 2020, 183, 802-817.e24.	13.5	100
6	Absolute Quantification of Transcription Factors Reveals Principles of Gene Regulation in Erythropoiesis. Molecular Cell, 2020, 78, 960-974.e11.	4.5	83
7	Assembly of SNAPc, Bdp1, and TBP on the U6 snRNA Gene Promoter in <i>Drosophila melanogaster</i> . Molecular and Cellular Biology, 2020, 40, .	1.1	6
8	Loss of the neural-specific BAF subunit ACTL6B relieves repression of early response genes and causes recessive autism. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 10055-10066.	3.3	34
9	Absolute quantification of transcription factors in human erythropoiesis using selected reaction monitoring mass spectrometry. STAR Protocols, 2020, 1, 100216.	0.5	4
10	Histone Octamer Structure Is Altered Early in ISW2 ATP-Dependent Nucleosome Remodeling. Cell Reports, 2019, 28, 282-294.e6.	2.9	20
11	Identification of Cross-linked Peptides Using Isotopomeric Cross-linkers. Journal of the American Society for Mass Spectrometry, 2019, 30, 1643-1653.	1.2	2
12	Single-Cell Proteomics Reveal that Quantitative Changes in Co-expressed Lineage-Specific Transcription Factors Determine Cell Fate. Cell Stem Cell, 2019, 24, 812-820.e5.	5.2	99
13	Architecture of the chromatin remodeler RSC and insights into its nucleosome engagement. ELife, 2019, 8, .	2.8	68
14	Transcription Activation Domains of the Yeast Factors Met4 and Ino2: Tandem Activation Domains with Properties Similar to the Yeast Gcn4 Activator. Molecular and Cellular Biology, 2018, 38, .	1.1	19
15	Gcn4-Mediator Specificity Is Mediated by a Large and Dynamic Fuzzy Protein-Protein Complex. Cell Reports, 2018, 22, 3251-3264.	2.9	110
16	Molecular structure of promoter-bound yeast TFIID. Nature Communications, 2018, 9, 4666.	5.8	32
17	Structure of human TFIID and mechanism of TBP loading onto promoter DNA. Science, 2018, 362, .	6.0	123
18	Modular Organization and Assembly of SWI/SNF Family Chromatin Remodeling Complexes. Cell, 2018, 175, 1272-1288.e20.	13.5	460

JEFFREY A RANISH

#	Article	IF	CITATIONS
19	Loss of Snf5 Induces Formation of an Aberrant SWI/SNF Complex. Cell Reports, 2017, 18, 2135-2147.	2.9	75
20	Mechanism for microbial population collapse in a fluctuating resource environment. Molecular Systems Biology, 2017, 13, 919.	3.2	22
21	SMARCB1 is required for widespread BAF complex–mediated activation of enhancers and bivalent promoters. Nature Genetics, 2017, 49, 1613-1623.	9.4	207
22	Function of Conserved Topological Regions within the <i>Saccharomyces cerevisiae</i> Basal Transcription Factor TFIIH. Molecular and Cellular Biology, 2016, 36, 2464-2475.	1.1	12
23	An <scp>LXR</scp> – <scp>NCOA</scp> 5 gene regulatory complex directs inflammatory crosstalkâ€dependent repression of macrophage cholesterol efflux. EMBO Journal, 2015, 34, 1244-1258.	3.5	35
24	Regulation of Mec1 kinase activity by the SWI/SNF chromatin remodeling complex. Genes and Development, 2015, 29, 591-602.	2.7	20
25	Architecture of the Human and Yeast General Transcription and DNA Repair Factor TFIIH. Molecular Cell, 2015, 59, 794-806.	4.5	91
26	Architecture of the <i> <scp>S</scp> accharomyces cerevisiae </i> <scp>SAGA</scp> transcription coactivator complex. EMBO Journal, 2014, 33, 2534-2546.	3.5	100
27	Control of RecBCD Enzyme Activity by DNA Binding- and Chi Hotspot-Dependent Conformational Changes. Journal of Molecular Biology, 2014, 426, 3479-3499.	2.0	38
28	Architecture of the Saccharomyces cerevisiae RNA polymerase I Core Factor complex. Nature Structural and Molecular Biology, 2014, 21, 810-816.	3.6	44
29	Proteomic and bioinformatic analysis of mammalian SWI/SNF complexes identifies extensive roles in human malignancy. Nature Genetics, 2013, 45, 592-601.	9.4	1,082
30	An Integrated Chemical Cross-linking and Mass Spectrometry Approach to Study Protein Complex Architecture and Function. Molecular and Cellular Proteomics, 2012, 11, M111.008318.	2.5	35
31	An embryonic stem cell chromatin remodeling complex, esBAF, is essential for embryonic stem cell self-renewal and pluripotency. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 5181-5186.	3.3	515
32	CTCF physically links cohesin to chromatin. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 8309-8314.	3.3	449
33	The transcription elongation factor TFIIS is a component of RNA polymerase II preinitiation complexes. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 16068-16073.	3.3	97
34	An Essential Switch in Subunit Composition of a Chromatin Remodeling Complex during Neural Development. Neuron, 2007, 55, 201-215.	3.8	647
35	Activator-Mediated Recruitment of the MLL2 Methyltransferase Complex to the β-Globin Locus. Molecular Cell, 2007, 27, 573-584.	4.5	122
36	Using Stable Isotope Tagging and Mass Spectrometry to Characterize Protein Complexes and to Detect Changes in Their Composition. Methods in Molecular Biology, 2007, 359, 17-35.	0.4	12

Jeffrey A Ranish

#	Article	IF	CITATIONS
37	Identification of TFB5, a new component of general transcription and DNA repair factor IIH. Nature Genetics, 2004, 36, 707-713.	9.4	147
38	A new, tenth subunit of TFIIH is responsible for the DNA repair syndrome trichothiodystrophy group A. Nature Genetics, 2004, 36, 714-719.	9.4	307
39	Dynamic changes in transcription factor complexes during erythroid differentiation revealed by quantitative proteomics. Nature Structural and Molecular Biology, 2004, 11, 73-80.	3.6	199
40	The study of macromolecular complexes by quantitative proteomics. Nature Genetics, 2003, 33, 349-355.	9.4	350
41	Automated Statistical Analysis of Protein Abundance Ratios from Data Generated by Stable-Isotope Dilution and Tandem Mass Spectrometry. Analytical Chemistry, 2003, 75, 6648-6657.	3.2	343
42	Integrated Genomic and Proteomic Analyses of a Systematically Perturbed Metabolic Network. Science, 2001, 292, 929-934.	6.0	1,921