Chin Hong Ooi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10437413/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Recent Advances and Future Perspectives on Microfluidic Liquid Handling. Micromachines, 2017, 8, 186.	1.4	131
2	Manipulation of liquid marbles. Microfluidics and Nanofluidics, 2015, 19, 483-495.	1.0	100
3	Digital polymerase chain reaction technology – recent advances and future perspectives. Lab on A Chip, 2018, 18, 3717-3732.	3.1	98
4	Digital microfluidics with a magnetically actuated floating liquid marble. Lab on A Chip, 2016, 16, 2211-2218.	3.1	78
5	A floating self-propelling liquid marble containing aqueous ethanol solutions. RSC Advances, 2015, 5, 101006-101012.	1.7	65
6	Liquid Marbles as Miniature Reactors for Chemical and Biological Applications. Processes, 2020, 8, 793.	1.3	60
7	Fundamentals of Differential Particle Inertial Focusing in Symmetric Sinusoidal Microchannels. Analytical Chemistry, 2019, 91, 4077-4084.	3.2	51
8	Coalescence Processes of Droplets and Liquid Marbles. Micromachines, 2017, 8, 336.	1.4	50
9	Deformation of a floating liquid marble. Soft Matter, 2015, 11, 4576-4583.	1.2	44
10	Liquid marbles as biochemical reactors for the polymerase chain reaction. Lab on A Chip, 2019, 19, 3220-3227.	3.1	44
11	Floating mechanism of a small liquid marble. Scientific Reports, 2016, 6, 21777.	1.6	43
12	Liquid marble-based digital microfluidics – fundamentals and applications. Lab on A Chip, 2021, 21, 1199-1216.	3.1	41
13	Liquid marble coalescence <i>via</i> vertical collision. Soft Matter, 2018, 14, 4160-4168.	1.2	36
14	Evaporation dynamics of liquid marbles at elevated temperatures. RSC Advances, 2018, 8, 15436-15443.	1.7	36
15	Evaporation of Ethanol–Water Binary Mixture Sessile Liquid Marbles. Langmuir, 2016, 32, 6097-6104.	1.6	35
16	Core-Shell Beads Made by Composite Liquid Marble Technology as A Versatile Microreactor for Polymerase Chain Reaction. Micromachines, 2020, 11, 242.	1.4	31
17	Dynamic behaviour of a magnetically actuated floating liquid marble. Microfluidics and Nanofluidics, 2017, 21, 1.	1.0	28
18	Capillarity: revisiting the fundamentals of liquid marbles. Microfluidics and Nanofluidics, 2020, 24, 1.	1.0	28

CHIN HONG OOI

#	Article	IF	CITATIONS
19	Manipulation of a floating liquid marble using dielectrophoresis. Lab on A Chip, 2018, 18, 3770-3779.	3.1	27
20	Picking up and placing a liquid marble using dielectrophoresis. Microfluidics and Nanofluidics, 2018, 22, 1.	1.0	27
21	The stress-strain relationship of liquid marbles under compression. Applied Physics Letters, 2019, 114, 043701.	1.5	24
22	Dielectrophoretic Trapping of a Floating Liquid Marble. Physical Review Applied, 2019, 11, .	1.5	24
23	Measuring the Coefficient of Friction of a Small Floating Liquid Marble. Scientific Reports, 2016, 6, 38346.	1.6	23
24	Inertial Microfluidic Purification of Floating Cancer Cells for Drug Screening and Three-Dimensional Tumor Models. Analytical Chemistry, 2020, 92, 11558-11564.	3.2	20
25	Accurate dielectrophoretic positioning of a floating liquid marble with a two-electrode configuration. Microfluidics and Nanofluidics, 2019, 23, 1.	1.0	17
26	An automated on-demand liquid marble generator based on electrohydrodynamic pulling. Review of Scientific Instruments, 2019, 90, 055102.	0.6	17
27	Critical Trapping Conditions for Floating Liquid Marbles. Physical Review Applied, 2020, 13, .	1.5	15
28	Effect of Core Liquid Surface Tension on the Liquid Marble Shell. Advanced Materials Interfaces, 2021, 8, 2001591.	1.9	15
29	Controllable high-performance liquid marble micromixer. Lab on A Chip, 2022, 22, 1508-1518.	3.1	15
30	Electrostatically excited liquid marble as a micromixer. Reaction Chemistry and Engineering, 2021, 6, 1386-1394.	1.9	13
31	Digital Imagingâ€based Colourimetry for Enzymatic Processes in Transparent Liquid Marbles. ChemPhysChem, 2021, 22, 99-105.	1.0	12
32	Oscillating sessile liquid marble - A tool to assess effective surface tension. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 627, 127176.	2.3	10
33	Core-Shell Beads as Microreactors for Phylogrouping of E. coli Strains. Micromachines, 2020, 11, 761.	1.4	8
34	Measuring the effective surface tension of a floating liquid marble using X-ray imaging. Soft Matter, 2021, 17, 4069-4076.	1.2	8
35	Investigation of liquid marble shell using $X\hat{a}\in r$ ay: shell thickness and effective surface tension. ChemNanoMat, 2022, 8, .	1.5	4
36	Loop-Mediated Isothermal Amplification in a Core-Shell Bead Assay for the Detection of Tyrosine Kinase AXL Overexpression. Micromachines, 2021, 12, 905.	1.4	3

#	Article	IF	CITATIONS
37	Noninvasive refilling of liquid marbles with water for microfluidic applications. Applied Physics Letters, 2022, 120, .	1.5	3
38	Modelling Sessile Droplet Profile Using Asymmetrical Ellipses. Processes, 2021, 9, 2081.	1.3	2