Daniel Herschlag

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10436875/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Direct Measurement of Interhelical DNA Repulsion and Attraction by Quantitative Cross-Linking. Journal of the American Chemical Society, 2022, 144, 1718-1728.	6.6	8
2	Cation enrichment in the ion atmosphere is promoted by local hydration of DNA. Physical Chemistry Chemical Physics, 2021, 23, 23203-23213.	1.3	10
3	The structural ensemble of a Holliday junction determined by X-ray scattering interference. Nucleic Acids Research, 2020, 48, 8090-8098.	6.5	10
4	How to measure and evaluate binding affinities. ELife, 2020, 9, .	2.8	251
5	Quantitative Studies of an RNA Duplex Electrostatics by Ion Counting. Biophysical Journal, 2019, 117, 1116-1124.	0.2	28
6	The roles of structural dynamics in the cellular functions of RNAs. Nature Reviews Molecular Cell Biology, 2019, 20, 474-489.	16.1	322
7	Enhancement of RNA/Ligand Association Kinetics via an Electrostatic Anchor. Biochemistry, 2019, 58, 2760-2768.	1.2	3
8	A Quantitative and Predictive Model for RNA Binding by Human Pumilio Proteins. Molecular Cell, 2019, 74, 966-981.e18.	4.5	55
9	The Story of RNA Folding, as Told in Epochs. Cold Spring Harbor Perspectives in Biology, 2018, 10, a032433.	2.3	42
10	Pseudouridine and <i>N</i> ⁶ -methyladenosine modifications weaken PUF protein/RNA interactions. Rna, 2017, 23, 611-618.	1.6	50
11	Determination of Ion Atmosphere Effects on the Nucleic Acid Electrostatic Potential and Ligand Association Using AH ⁺ A·C Wobble Formation in Double-Stranded DNA. Journal of the American Chemical Society, 2017, 139, 7540-7548.	6.6	23
12	Differential catalytic promiscuity of the alkaline phosphatase superfamily bimetallo core reveals mechanistic features underlying enzyme evolution. Journal of Biological Chemistry, 2017, 292, 20960-20974.	1.6	24
13	Slow molecular recognition by RNA. Rna, 2017, 23, 1745-1753.	1.6	35
14	Single-Molecule Fluorescence Reveals Commonalities and Distinctions among Natural and <i>in Vitro</i> -Selected RNA Tertiary Motifs in a Multistep Folding Pathway. Journal of the American Chemical Society, 2017, 139, 18576-18589.	6.6	14
15	Visualizing the formation of an RNA folding intermediate through a fast highly modular secondary structure switch. Nature Communications, 2016, 7, ncomms11768.	5.8	50
16	Tungstate as a Transition State Analog for Catalysis by Alkaline Phosphatase. Journal of Molecular Biology, 2016, 428, 2758-2768.	2.0	22
17	Mechanistic and Evolutionary Insights from Comparative Enzymology of Phosphomonoesterases and Phosphodiesterases across the Alkaline Phosphatase Superfamily. Journal of the American Chemical Society, 2016, 138, 14273-14287.	6.6	40
18	Does Cation Size Affect Occupancy and Electrostatic Screening of the Nucleic Acid Ion Atmosphere?. Journal of the American Chemical Society, 2016, 138, 10925-10934.	6.6	50

#	Article	IF	CITATIONS
19	Kinetic and thermodynamic framework for P4-P6 RNA reveals tertiary motif modularity and modulation of the folding preferred pathway. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E4956-E4965.	3.3	20
20	An active site rearrangement within the <i>Tetrahymena</i> group I ribozyme releases nonproductive interactions and allows formation of catalytic interactions. Rna, 2016, 22, 32-48.	1.6	7
21	Differential Assembly of Catalytic Interactions within the Conserved Active Sites of Two Ribozymes. PLoS ONE, 2016, 11, e0160457.	1.1	0
22	Probing the kinetic and thermodynamic consequences of the tetraloop/tetraloop receptor monovalent ion-binding site in P4–P6 RNA by smFRET. Biochemical Society Transactions, 2015, 43, 172-178.	1.6	19
23	From static to dynamic: the need for structural ensembles and a predictive model of RNA folding and function. Current Opinion in Structural Biology, 2015, 30, 125-133.	2.6	36
24	Cation–Anion Interactions within the Nucleic Acid Ion Atmosphere Revealed by Ion Counting. Journal of the American Chemical Society, 2015, 137, 14705-14715.	6.6	65
25	Evolutionary Conservation and Diversification of Puf RNA Binding Proteins and Their mRNA Targets. PLoS Biology, 2015, 13, e1002307.	2.6	54
26	Understanding Nucleic Acid–Ion Interactions. Annual Review of Biochemistry, 2014, 83, 813-841.	5.0	358
27	Probing the Origins of Catalytic Discrimination between Phosphate and Sulfate Monoester Hydrolysis: Comparative Analysis of Alkaline Phosphatase and Protein Tyrosine Phosphatases. Biochemistry, 2014, 53, 6811-6819.	1.2	25
28	Ion Counting from Explicit-Solvent Simulations and 3D-RISM. Biophysical Journal, 2014, 106, 883-894.	0.2	102
29	Fundamental Challenges in Mechanistic Enzymology: Progress toward Understanding the Rate Enhancements of Enzymes. Biochemistry, 2013, 52, 2050-2067.	1.2	69
30	Ground State Destabilization by Anionic Nucleophiles Contributes to the Activity of Phosphoryl Transfer Enzymes. PLoS Biology, 2013, 11, e1001599.	2.6	35
31	Metal-ion rescue revisited: Biochemical detection of site-bound metal ions important for RNA folding. Rna, 2012, 18, 1123-1141.	1.6	36
32	A Role for a Single-Stranded Junction in RNA Binding and Specificity by the Tetrahymena Group I Ribozyme. Journal of the American Chemical Society, 2012, 134, 1910-1913.	6.6	8
33	Thermodynamic Evidence for Negative Charge Stabilization by a Catalytic Metal Ion within an RNA Active Site. ACS Chemical Biology, 2012, 7, 294-299.	1.6	7
34	High-Resolution Analysis of Zn2+ Coordination in the Alkaline Phosphatase Superfamily by EXAFS and X-ray Crystallography. Journal of Molecular Biology, 2012, 415, 102-117.	2.0	58
35	Electrostatics of Nucleic Acid Folding under Conformational Constraint. Journal of the American Chemical Society, 2012, 134, 4607-4614.	6.6	30
36	Single Molecule Analysis Research Tool (SMART): An Integrated Approach for Analyzing Single Molecule Data. PLoS ONE, 2012, 7, e30024.	1.1	81

#	Article	IF	CITATIONS
37	Isotope-Edited FTIR of Alkaline Phosphatase Resolves Paradoxical Ligand Binding Properties and Suggests a Role for Ground-State Destabilization. Journal of the American Chemical Society, 2011, 133, 11621-11631.	6.6	23
38	Tightening of Active Site Interactions En Route to the Transition State Revealed by Single-Atom Substitution in the Guanosine-Binding Site of the <i>Tetrahymena</i> Group I Ribozyme. Journal of the American Chemical Society, 2011, 133, 7791-7800.	6.6	5
39	Structure–Function Analysis from the Outside In: Long-Range Tertiary Contacts in RNA Exhibit Distinct Catalytic Roles. Biochemistry, 2011, 50, 8733-8755.	1.2	14
40	Biological Phosphoryl-Transfer Reactions: Understanding Mechanism and Catalysis. Annual Review of Biochemistry, 2011, 80, 669-702.	5.0	340
41	Identification of RNA recognition elements in the Saccharomyces cerevisiae transcriptome. Nucleic Acids Research, 2011, 39, 1501-1509.	6.5	67
42	Multiple native states reveal persistent ruggedness of an RNA folding landscape. Nature, 2010, 463, 681-684.	13.7	187
43	Dissecting electrostatic screening, specific ion binding, and ligand binding in an energetic model for glycine riboswitch folding. Rna, 2010, 16, 708-719.	1.6	57
44	Measuring the Energetic Coupling of Tertiary Contacts in RNA Folding using Single Molecule Fluorescence Resonance Energy Transfer. Methods in Enzymology, 2010, 472, 205-220.	0.4	3
45	The Ligand-Free State of the TPP Riboswitch: A Partially Folded RNA Structure. Journal of Molecular Biology, 2010, 396, 153-165.	2.0	67
46	Multiple Unfolding Events during Native Folding of the Tetrahymena Group I Ribozyme. Journal of Molecular Biology, 2010, 400, 1067-1077.	2.0	29
47	A Rearrangement of the Guanosine-Binding Site Establishes an Extended Network of Functional Interactions in the <i>Tetrahymena</i> Group I Ribozyme Active Site. Biochemistry, 2010, 49, 2753-2762.	1.2	21
48	Do conformational biases of simple helical junctions influence RNA folding stability and specificity?. Rna, 2009, 15, 2195-2205.	1.6	53
49	Concordant Regulation of Translation and mRNA Abundance for Hundreds of Targets of a Human microRNA. PLoS Biology, 2009, 7, e1000238.	2.6	354
50	The far reaches of enzymology. Nature Chemical Biology, 2009, 5, 516-520.	3.9	24
51	Probing the Dynamics of the P1 Helix within the Tetrahymena Group I Intron. Journal of the American Chemical Society, 2009, 131, 9571-9578.	6.6	22
52	Probing Nucleic Acid–Ion Interactions with Buffer Exchange-Atomic Emission Spectroscopy. Methods in Enzymology, 2009, 469, 375-389.	0.4	25
53	Metal Ion-Based RNA Cleavage as a Structural Probe. Methods in Enzymology, 2009, 468, 91-106.	0.4	56
54	Use of Phosphorothioates to Identify Sites of Metal-Ion Binding in RNA. Methods in Enzymology, 2009, 468, 311-333.	0.4	15

#	Article	IF	CITATIONS
55	Motions of the Substrate Recognition Duplex in a Group I Intron Assessed by Site-Directed Spin Labeling. Journal of the American Chemical Society, 2009, 131, 3136-3137.	6.6	42
56	Coarse-grained modeling of large RNA molecules with knowledge-based potentials and structural filters. Rna, 2009, 15, 189-199.	1.6	300
57	Methods of Site-Specific Labeling of RNA with Fluorescent Dyes. Methods in Enzymology, 2009, 469, 47-68.	0.4	52
58	A repulsive field: advances in the electrostatics of the ion atmosphere. Current Opinion in Chemical Biology, 2008, 12, 619-625.	2.8	80
59	Semiautomated and rapid quantification of nucleic acid footprinting and structure mapping experiments. Nature Protocols, 2008, 3, 1395-1401.	5.5	70
60	Unwinding RNA's secrets: advances in the biology, physics, and modeling of complex RNAs. Current Opinion in Structural Biology, 2008, 18, 305-314.	2.6	44
61	Testing Geometrical Discrimination within an Enzyme Active Site: Constrained Hydrogen Bonding in the Ketosteroid Isomerase Oxyanion Hole. Journal of the American Chemical Society, 2008, 130, 13696-13708.	6.6	91
62	Comparative Enzymology in the Alkaline Phosphatase Superfamily to Determine the Catalytic Role of an Active-Site Metal Ion. Journal of Molecular Biology, 2008, 384, 1174-1189.	2.0	103
63	Direct Measurement of Tertiary Contact Cooperativity in RNA Folding. Journal of the American Chemical Society, 2008, 130, 6085-6087.	6.6	63
64	Promiscuous Sulfatase Activity and Thio-Effects in a Phosphodiesterase of the Alkaline Phosphatase Superfamily. Biochemistry, 2008, 47, 12853-12859.	1.2	49
65	Critical Assessment of Nucleic Acid Electrostatics via Experimental and Computational Investigation of an Unfolded State Ensemble. Journal of the American Chemical Society, 2008, 130, 12334-12341.	6.6	74
66	Arginine Coordination in Enzymatic Phosphoryl Transfer: Evaluation of the Effect of Arg166 Mutations in <i>Escherichia coli</i> Alkaline Phosphatase. Biochemistry, 2008, 47, 7663-7672.	1.2	52
67	Structural inference of native and partially folded RNA by high-throughput contact mapping. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 4144-4149.	3.3	79
68	Diverse RNA-Binding Proteins Interact with Functionally Related Sets of RNAs, Suggesting an Extensive Regulatory System. PLoS Biology, 2008, 6, e255.	2.6	540
69	Systematic Identification of mRNAs Recruited to Argonaute 2 by Specific microRNAs and Corresponding Changes in Transcript Abundance. PLoS ONE, 2008, 3, e2126.	1.1	152
70	Modulation of individual steps in group I intron catalysis by a peripheral metal ion. Rna, 2007, 13, 1656-1667.	1.6	14
71	Low specificity of metal ion binding in the metal ion core of a folded RNA. Rna, 2007, 13, 1205-1213.	1.6	32
72	Structural Transitions and Thermodynamics of a Glycine-Dependent Riboswitch from Vibrio cholerae. Journal of Molecular Biology, 2007, 365, 1393-1406.	2.0	116

#	Article	IF	CITATIONS
73	Quantitative and Comprehensive Decomposition of the Ion Atmosphere around Nucleic Acids. Journal of the American Chemical Society, 2007, 129, 14981-14988.	6.6	255
74	Kinetic Isotope Effects for Alkaline Phosphatase Reactions:Â Implications for the Role of Active-Site Metal Ions in Catalysis. Journal of the American Chemical Society, 2007, 129, 9789-9798.	6.6	70
75	Measuring the Folding Transition Time of Single RNA Molecules. Biophysical Journal, 2007, 92, 3275-3283.	0.2	44
76	Evaluation of Ion Binding to DNA Duplexes Using a Size-Modified Poisson-Boltzmann Theory. Biophysical Journal, 2007, 93, 3202-3209.	0.2	134
77	Low-resolution models for nucleic acids from small-angle X-ray scattering with applications to electrostatic modeling. Journal of Applied Crystallography, 2007, 40, s229-s234.	1.9	37
78	The Paradoxical Behavior of a Highly Structured Misfolded Intermediate in RNA Folding. Journal of Molecular Biology, 2006, 363, 531-544.	2.0	92
79	Nanomechanical measurements of the sequence-dependent folding landscapes of single nucleic acid hairpins. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 6190-6195.	3.3	397
80	Genome-wide identification of mRNAs associated with the translational regulator PUMILIO in Drosophila melanogaster. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 4487-4492.	3.3	264
81	Direct Measurement of the Full, Sequence-Dependent Folding Landscape of a Nucleic Acid. Science, 2006, 314, 1001-1004.	6.0	356
82	SAFA: Semi-automated footprinting analysis software for high-throughput quantification of nucleic acid footprinting experiments. Rna, 2005, 11, 344-354.	1.6	299
83	Structural specificity conferred by a group I RNA peripheral element. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 10176-10181.	3.3	43
84	Probing counterion modulated repulsion and attraction between nucleic acid duplexes in solution. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 1035-1040.	3.3	97
85	Dissecting eukaryotic translation and its control by ribosome density mapping. Nucleic Acids Research, 2005, 33, 2421-2432.	6.5	120
86	Determining the Mg2+Stoichiometry for Folding an RNA Metal Ion Core. Journal of the American Chemical Society, 2005, 127, 8272-8273.	6.6	98
87	Alkaline Phosphatase Catalysis Is Ultrasensitive to Charge Sequestered between the Active Site Zinc Ions. Journal of the American Chemical Society, 2005, 127, 9314-9315.	6.6	42
88	Do Electrostatic Interactions with Positively Charged Active Site Groups Tighten the Transition State for Enzymatic Phosphoryl Transfer?. Journal of the American Chemical Society, 2004, 126, 11814-11819.	6.6	47
89	Principles of RNA Compaction: Insights from the Equilibrium Folding Pathway of the P4-P6 RNA Domain in Monovalent Cations. Journal of Molecular Biology, 2004, 343, 1195-1206.	2.0	118
90	Extensive Association of Functionally and Cytotopically Related mRNAs with Puf Family RNA-Binding Proteins in Yeast. PLoS Biology, 2004, 2, e79.	2.6	574

#	Article	IF	CITATIONS
91	Challenges in Enzyme Mechanism and Energetics. Annual Review of Biochemistry, 2003, 72, 517-571.	5.0	239
92	Exploration of the Transition State for Tertiary Structure Formation between an RNA Helix and a Large Structured RNA. Journal of Molecular Biology, 2003, 328, 1011-1026.	2.0	96
93	The Fastest Global Events in RNA Folding: Electrostatic Relaxation and Tertiary Collapse of the Tetrahymena Ribozyme. Journal of Molecular Biology, 2003, 332, 311-319.	2.0	130
94	Extraordinarily slow binding of guanosine to the Tetrahymena group I ribozyme: Implications for RNA preorganization and function. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 2300-2305.	3.3	41
95	Genome-wide analysis of mRNA translation profiles in Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 3889-3894.	3.3	632
96	Rapid compaction during RNA folding. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 4266-4271.	3.3	207
97	Exploring the folding landscape of a structured RNA. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 155-160.	3.3	222
98	Precision and functional specificity in mRNA decay. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 5860-5865.	3.3	652
99	Probing the Tetrahymena Group I Ribozyme Reaction in Both Directions. Biochemistry, 2002, 41, 11171-11183.	1.2	41
100	RNA simulations: probing hairpin unfolding and the dynamics of a GNRA tetraloop 1 1Edited by J. Dovdna. Journal of Molecular Biology, 2002, 317, 493-506.	2.0	102
101	Alkaline Phosphatase Revisited:  Hydrolysis of Alkyl Phosphates. Biochemistry, 2002, 41, 3207-3225.	1.2	156
102	Dissection of a metal-ion-mediated conformational change in Tetrahymena ribozyme catalysis. Rna, 2002, 8, 861-872.	1.6	27
103	Probing the folding landscape of the Tetrahymena ribozyme: commitment to form the native conformation is late in the folding pathway. Journal of Molecular Biology, 2001, 308, 839-851.	2.0	97
104	Defining the Catalytic Metal Ion Interactions in theTetrahymenaRibozyme Reactionâ€. Biochemistry, 2001, 40, 5161-5171.	1.2	145
105	Comparison of the hammerhead cleavage reactions stimulated by monovalent and divalent cations. Rna, 2001, 7, 537-545.	1.6	143
106	Small angle X-ray scattering reveals a compact intermediate in RNA folding. Nature Structural Biology, 2000, 7, 367-370.	9.7	96
107	A Single-Molecule Study of RNA Catalysis and Folding. Science, 2000, 288, 2048-2051.	6.0	696
108	The P5abc Peripheral Element Facilitates Preorganization of the Tetrahymena Group I Ribozyme for Catalysis. Biochemistry, 2000, 39, 2639-2651.	1.2	62

#	Article	IF	CITATIONS
109	Use of Duplex Rigidity for Stability and Specificity in RNA Tertiary Structure. Biochemistry, 2000, 39, 6183-6189.	1.2	12
110	Specificity from steric restrictions in the guanosine binding pocket of a group I ribozyme. Rna, 1999, 5, 158-166.	1.6	29
111	Catalytic promiscuity and the evolution of new enzymatic activities. Chemistry and Biology, 1999, 6, R91-R105.	6.2	657
112	Nucleophilic Activation by Positioning in Phosphoryl Transfer Catalyzed by Nucleoside Diphosphate Kinaseâ€,‡. Biochemistry, 1999, 38, 4701-4711.	1.2	62
113	Characterization of a Local Folding Event of theTetrahymenaGroup I Ribozyme:Â Effects of Oligonucleotide Substrate Length, pH, and Temperature on the Two Substrate Binding Stepsâ€. Biochemistry, 1999, 38, 14192-14204.	1.2	27
114	Protonated 2â€~-Aminoguanosine as a Probe of the Electrostatic Environment of the Active Site of theTetrahymenaGroup I Ribozymeâ€. Biochemistry, 1999, 38, 10976-10988.	1.2	28
115	Catalysis of Phosphoryl Transfer from ATP by Amine Nucleophiles. Journal of the American Chemical Society, 1999, 121, 5837-5845.	6.6	28
116	Does the Active Site Arginine Change the Nature of the Transition State for Alkaline Phosphatase-Catalyzed Phosphoryl Transfer?. Journal of the American Chemical Society, 1999, 121, 11022-11023.	6.6	43
117	Impaired Transition State Complementarity in the Hydrolysis ofO-Arylphosphorothioates by Protein-Tyrosine Phosphatasesâ€. Biochemistry, 1999, 38, 12111-12123.	1.2	63
118	Identification of the Hammerhead Ribozyme Metal Ion Binding Site Responsible for Rescue of the Deleterious Effect of a Cleavage Site Phosphorothioateâ€. Biochemistry, 1999, 38, 14363-14378.	1.2	193
119	New pathways in folding of the Tetrahymena group I RNA enzyme. Journal of Molecular Biology, 1999, 291, 1155-1167.	2.0	105
120	[11] Hydrogen bonding in enzymatic catalysis: Analysis of energetic contributions. Methods in Enzymology, 1999, 308, 246-276.	0.4	39
121	Ribozyme crevices and catalysis. Nature, 1998, 395, 548-549.	13.7	10
122	A Core Folding Model for Catalysis by the Hammerhead Ribozyme Accounts for Its Extraordinary Sensitivity to Abasic Mutationsâ€. Biochemistry, 1998, 37, 14765-14775.	1.2	45
123	Direct Demonstration of the Catalytic Role of Binding Interactions in an Enzymatic Reaction. Biochemistry, 1998, 37, 9902-9911.	1.2	46
124	Structure–function relationships in the hammerhead ribozyme probed by base rescue. Rna, 1998, 4, 1332-1346.	1.6	23
125	MECHANISTIC ASPECTS OF ENZYMATIC CATALYSIS:Lessons from Comparison of RNA and Protein Enzymes. Annual Review of Biochemistry, 1997, 66, 19-59.	5.0	262
126	Mechanistic Investigations of a Ribozyme Derived from the Tetrahymena Group I Intron: Insights into Catalysis and the Second Step of Self-Splicingâ€. Biochemistry, 1996, 35, 5796-5809.	1.2	52

#	Article	IF	CITATIONS
127	pH Dependencies of the Tetrahymena Ribozyme Reveal an Unconventional Origin of an Apparent pKa. Biochemistry, 1996, 35, 1560-1570.	1.2	56
128	Isolation of a local tertiary folding transition in the context of a globally folded RNA. Nature Structural and Molecular Biology, 1996, 3, 701-710.	3.6	59
129	Mapping the transition state for ATP hydrolysis: implications for enzymatic catalysis. Chemistry and Biology, 1995, 2, 729-739.	6.2	183
130	RNA Chaperones and the RNA Folding Problem. Journal of Biological Chemistry, 1995, 270, 20871-20874.	1.6	632
131	The nature of the transition state for enzyme-catalyzed phosphoryl transfer. Hydrolysis of O-aryl phosphorothioates by alkaline phosphatase. Biochemistry, 1995, 34, 12255-12264.	1.2	151
132	Dissection of the Role of the Conserved G.cntdot.U Pair in Group I RNA Self-Splicing. Biochemistry, 1994, 33, 13864-13879.	1.2	88
133	A Kinetic and Thermodynamic Framework for the Hammerhead Ribozyme Reaction. Biochemistry, 1994, 33, 3374-3385.	1.2	287
134	Comparison of pH Dependencies of the Tetrahymena Ribozyme Reactions with RNA 2'-Substituted and Phosphorothioate Substrates Reveals a Rate-Limiting Conformational Step. Biochemistry, 1994, 33, 5291-5297.	1.2	76
135	The importance of being ribose at the cleavage site in the Tetrahymena ribozyme reaction. Biochemistry, 1993, 32, 8312-8321.	1.2	137
136	Contributions of 2'-hydroxyl groups of the RNA substrate to binding and catalysis by the Tetrahymena ribozyme. An energetic picture of an active site composed of RNA. Biochemistry, 1993, 32, 8299-8311.	1.2	121
137	Evidence for processivity and two-step binding of the RNA substrate from studies of J1/2 mutants of the Tetrahymena ribozyme. Biochemistry, 1992, 31, 1386-1399.	1.2	134
138	Ribozyme-catalyzed and nonenzymic reactions of phosphate diesters: rate effects upon substitution of sulfur for a nonbridging phosphoryl oxygen atom. Biochemistry, 1991, 30, 4844-4854.	1.2	276
139	Mutations in a nonconserved sequence of the Tetrahymena ribozyme increase activity and specificity. Cell, 1991, 67, 1007-1019.	13.5	88
140	DNA cleavage catalysed by the ribozyme from Tetrahymena. Nature, 1990, 344, 405-409.	13.7	139
141	Catalysis of the hydrolysis of phosphorylated pyridines by Mg(OH)+: a possible model for enzymic phosphoryl transfer. Biochemistry, 1990, 29, 5172-5179.	1.2	111
142	Catalysis of RNA cleavage by the Tetrahymena thermophila ribozyme. 1. Kinetic description of the reaction of an RNA substrate complementary to the active site. Biochemistry, 1990, 29, 10159-10171.	1.2	329
143	Catalysis of RNA cleavage by the Tetrahymena thermophila ribozyme. 2. Kinetic description of the reaction of an RNA substrate that forms a mismatch at the active site. Biochemistry, 1990, 29, 10172-10180.	1.2	107
144	Phosphoryl transfer to anionic oxygen nucleophiles. Nature of the transition state and electrostatic repulsion. Journal of the American Chemical Society, 1989, 111, 7587-7596.	6.6	89

#	Article	IF	CITATIONS
145	Evidence that metaphosphate monoanion is not an intermediate in solvolysis reactions in aqueous solution. Journal of the American Chemical Society, 1989, 111, 7579-7586.	6.6	100
146	The role of induced fit and conformational changes of enzymes in specificity and catalysis. Bioorganic Chemistry, 1988, 16, 62-96.	2.0	133
147	The effect of divalent metal ions on the rate and transition-state structure of phosphoryl-transfer reactions. Journal of the American Chemical Society, 1987, 109, 4665-4674.	6.6	140