Mahajan Sagar Bhaskar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10436871/publications.pdf

Version: 2024-02-01

331670 315739 61 1,621 21 38 citations g-index h-index papers 62 62 62 794 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A Novel Modified Sine-Cosine Optimized MPPT Algorithm for Grid Integrated PV System under Real Operating Conditions. IEEE Access, 2019, 7, 10467-10477.	4.2	120
2	A Hybrid Photovoltaic-Fuel Cell for Grid Integration With Jaya-Based Maximum Power Point Tracking: Experimental Performance Evaluation. IEEE Access, 2019, 7, 82978-82990.	4.2	117
3	Survey of DC-DC Non-Isolated Topologies for Unidirectional Power Flow in Fuel Cell Vehicles. IEEE Access, 2020, 8, 178130-178166.	4.2	109
4	A New Structure of High Voltage Gain SEPIC Converter for Renewable Energy Applications. IEEE Access, 2019, 7, 89857-89868.	4.2	99
5	High Gain Transformer-Less Double-Duty-Triple-Mode DC/DC Converter for DC Microgrid. IEEE Access, 2019, 7, 36353-36370.	4.2	97
6	Non-Isolated High-Gain Triple Port DC–DC Buck-Boost Converter With Positive Output Voltage for Photovoltaic Applications. IEEE Access, 2020, 8, 113649-113666.	4.2	97
7	A Novel Modified Switched Inductor Boost Converter With Reduced Switch Voltage Stress. IEEE Transactions on Industrial Electronics, 2021, 68, 1275-1289.	7.9	86
8	New CUK–SEPIC converter based photovoltaic power system with hybrid GSA–PSO algorithm employing MPPT for water pumping applications. IET Power Electronics, 2020, 13, 2824-2830.	2.1	73
9	A Hybrid Photovoltaic-Fuel Cell-Based Single-Stage Grid Integration With Lyapunov Control Scheme. IEEE Systems Journal, 2020, 14, 3334-3342.	4.6	71
10	An Original Transformer and Switched-Capacitor (T & Extension for DC-DC Boost Converter for High-Voltage/Low-Current Renewable Energy Applications: Hardware Implementation of a New T & Examp; SC Boost Converter. Energies, 2018, 11, 783.	3.1	69
11	Internet of things augmented a novel PSOâ€employed modified zeta converterâ€based photovoltaic maximum power tracking system: hardware realisation. IET Power Electronics, 2020, 13, 2775-2781.	2.1	54
12	Closed-Loop Control and Boundary for CCM and DCM of Nonisolated Inverting <i>N</i> × Multilevel Boost Converter for High-Voltage Step-Up Applications. IEEE Transactions on Industrial Electronics, 2020, 67, 2863-2874.	7.9	44
13	A New Triple-Switch-Triple-Mode High Step-Up Converter With Wide Range of Duty Cycle for DC Microgrid Applications. IEEE Transactions on Industry Applications, 2019, 55, 7425-7441.	4.9	39
14	Analysis and Investigation of Hybrid DC–DC Non-Isolated and Non-Inverting Nx Interleaved Multilevel Boost Converter (Nx-IMBC) for High Voltage Step-Up Applications: Hardware Implementation. IEEE Access, 2020, 8, 87309-87328.	4.2	38
15	The state-of-the-art of power electronics converters configurations in electric vehicle technologies. , 2022, 1, 100001.		37
16	Nonisolated Symmetrical Interleaved Multilevel Boost Converter With Reduction in Voltage Rating of Capacitors for High-Voltage Microgrid Applications. IEEE Transactions on Industry Applications, 2019, 55, 7410-7424.	4.9	35
17	DC-Transformer Modelling, Analysis and Comparison of the Experimental Investigation of a Non-Inverting and Non-Isolated Nx Multilevel Boost Converter (Nx MBC) for Low to High DC Voltage Applications. IEEE Access, 2018, 6, 70935-70951.	4.2	34
18	New triâ€switching state nonâ€isolated high gain DC–DC boost converter for microgrid application. IET Power Electronics, 2019, 12, 2741-2750.	2.1	33

#	Article	IF	CITATIONS
19	High Gain Switched-Inductor-Double-Leg Converter With Wide Duty Range for DC Microgrid. IEEE Transactions on Industrial Electronics, 2021, 68, 9561-9573.	7.9	26
20	An improved hybrid PVâ€wind power system with MPPT for water pumping applications. International Transactions on Electrical Energy Systems, 2020, 30, e12210.	1.9	25
21	Grid Synchronization of a Seven-Phase Wind Electric Generator Using d-q PLL. Energies, 2017, 10, 926.	3.1	23
22	An Improved Harmonics Mitigation Scheme for a Modular Multilevel Converter. IEEE Access, 2019, 7, 147244-147255.	4.2	22
23	An Original Hybrid Multilevel DC-AC Converter Using Single-Double Source Unit for Medium Voltage Applications: Hardware Implementation and Investigation. IEEE Access, 2020, 8, 71291-71301.	4.2	20
24	High gain threeâ€state switching hybrid boost converter for DC microgrid applications. IET Power Electronics, 2019, 12, 3656-3667.	2.1	19
25	Modified multilevel buck–boost converter with equal voltage acrosseach capacitor: analysis and experimental investigations. IET Power Electronics, 2019, 12, 3318-3330.	2.1	17
26	Real-Time Implementation of Extended Kalman Filter Observer With Improved Speed Estimation for Sensorless Control. IEEE Access, 2021, 9, 50452-50465.	4.2	17
27	Double Stage Double Output DC–DC Converters for High Voltage Loads in Fuel Cell Vehicles. Energies, 2019, 12, 3681.	3.1	16
28	Non-Isolated DC–DC Power Converter With High Gain and Inverting Capability. IEEE Access, 2021, 9, 62084-62092.	4.2	15
29	Investigations of AC Microgrid Energy Management Systems Using Distributed Energy Resources and Plug-in Electric Vehicles. Energies, 2019, 12, 2834.	3.1	14
30	Novel Non-Isolated Quad-Switched Inductor Double-Switch Converter for DC Microgrid Application. , 2020, , .		14
31	Combined Harmonic Reduction and DC Voltage Regulation of A Single DC Source Five-Level Multilevel Inverter for Wind Electric System. Electronics (Switzerland), 2020, 9, 979.	3.1	14
32	Singleâ€phase hybrid multilevel inverter topology with low switching frequency modulation techniques for lower order harmonic elimination. IET Power Electronics, 2020, 13, 4117-4127.	2.1	12
33	Triple-Mode Active-Passive Parallel Intermediate Links Converter With High Voltage Gain and Flexibility in Selection of Duty Cycles. IEEE Access, 2020, 8, 134716-134727.	4.2	11
34	Modelling, analysis, and implementation of a switchedâ€inductor based DC/DC converter with reduced switch current stress. IET Power Electronics, 2021, 14, 1504-1514.	2.1	9
35	A Multilevel Inverter Topology Using Diode Half-Bridge Circuit with Reduced Power Component. Energies, 2021, 14, 7249.	3.1	9
36	Double stage converter with low current stress for low to high voltage conversion in nanogrid. Energy Reports, 2021, 7, 5710-5721.	5.1	8

#	Article	lF	Citations
37	Investigation for Performances Comparison PI, Adaptive PI, Fuzzy Speed Control Induction Motor for Centrifugal Pumping Application. , 2019, , .		7
38	L-L Converter for Fuel Cell Vehicular Power Train Applications: Hardware Implementation of Primary Member of X-Y Converter Family. , 2018 , , .		6
39	Two-Tier Converter: A New Structure of High Gain DC-DC Converter with Reduced Voltage Stress. , 2020, , .		6
40	Investigation of a Transistor Clamped T-Type Multilevel H-Bridge Inverter With Inverted Double Reference Single Carrier PWM Technique for Renewable Energy Applications. IEEE Access, 2020, 8, 161787-161804.	4.2	6
41	Implementation of Designed PV Integrated Controlled Converter System. IEEE Access, 2020, 8, 100905-100915.	4.2	6
42	Hardware Implementation of a New Single Input Double Output L-L Converter for High Voltage Auxiliary Loads in Fuel-cell Vehicles. , $2019, , .$		5
43	XL Converters- New Series of High Gain DC-DC Converters for Renewable Energy Conversion. , 2019, , .		5
44	A New Multilevel Member of Modified CUK Converter Family for Renewable Energy Applications. , 2019, , .		5
45	Novel Hybrid High Gain Converter: Combination of Cuk and Buck-Boost Structures with Switched Inductor for DC Microgrid. , 2020, , .		5
46	2L-2L Converter: Switched Inductor Based High Voltage Step-up Converter for Fuel Cell Vehicular Applications. , 2019, , .		4
47	E ^K Î, multilevel inverter – a minimal switch novel configuration for higher number of output voltage levels. IET Power Electronics, 2020, 13, 2804-2815.	2.1	4
48	An experimental performance verification of continuous mixed Pâ \in norm based adaptive asymmetrical fuzzy logic controller for single stage photovoltaic grid integration. IET Renewable Power Generation, 0, , .	3.1	4
49	Hardware Implementation and a New Adaptation in the Winding Scheme of Standard Three Phase Induction Machine to Utilize for Multifunctional Operation: A New Multifunctional Induction Machine. Energies, 2017, 10, 1757.	3.1	3
50	New DC-DC Multilevel Configurations of 2L-Y Boost Converters with High Voltage Conversion Ratio for Renewable Energy Applications. , 2019, , .		3
51	Chain of X-Y Power Novel DC-DC Converters with Synchronous Grounded Switching for High Step-Up Renewable Power Applications. , 2020, , .		3
52	New High Gain 2LC-Y Multilevel-Boost-Converter (2LC-Y MBC) Topologies for Renewable Energy Conversion: Members of X-Y Converter Family. , 2019, , .		2
53	Investigation Studies of DC-DC Boost Converter With Proportional-Integral-Derivative Controller Using Optimization Techniques. , 2020, , .		2
54	Novel PWM Technique for Quasi Switched Boost Converter for the Nano-grid Applications. , 2019, , .		1

#	Article	IF	CITATIONS
55	Reduction of Main-Grid Dependence in Future DC Micro-Grids Using Electric Springs. , 2019, , .		1
56	Testing of Local Control Cabinet In Gas Insulated Switchgear Using Design of Simulation Kit - Revista. , 2019, , .		0
57	Silicon Carbide (SiC) based Constant DC Current Source for DC Current Transformer Calibration. , 2020, , .		O
58	Corrections to "An Improved Harmonics Mitigation Scheme for a Modular Multilevel Converter― [2019 147244-147255]. IEEE Access, 2020, 8, 65351-65351.	4.2	0
59	3Nx DC-DC Converter: Interleaved Topology To Enhance Voltage Transfer Gain. , 2020, , .		O
60	Automatic Pulse Sequence Selector for Novel PWM Technique: FPGA LabVIEW Implementation., 2021,,.		0
61	A Geometric Series Based Nearest Level Modulation Scheme for Multilevel Inverter. , 2020, , .		O