Sangchul Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10435224/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The application of graphene as electrodes in electrical and optical devices. Nanotechnology, 2012, 23, 112001.	1.3	329
2	Large-scale patterned multi-layer graphene films as transparent conducting electrodes for GaN light-emitting diodes. Nanotechnology, 2010, 21, 175201.	1.3	259
3	Flexible Organic Memory Devices with Multilayer Graphene Electrodes. ACS Nano, 2011, 5, 5995-6000.	7.3	131
4	Enhanced Charge Injection in Pentacene Fieldâ€Effect Transistors with Graphene Electrodes. Advanced Materials, 2011, 23, 100-105.	11.1	124
5	Flexible organic solar cells composed of P3HT:PCBM using chemically doped graphene electrodes. Nanotechnology, 2012, 23, 344013.	1.3	119
6	Efficient bulk-heterojunction photovoltaic cells with transparent multi-layer graphene electrodes. Organic Electronics, 2010, 11, 1864-1869.	1.4	113
7	Tuning of a graphene-electrode work function to enhance the efficiency of organic bulk heterojunction photovoltaic cells with an inverted structure. Applied Physics Letters, 2010, 97, .	1.5	92
8	Effects of multi-layer graphene capping on Cu interconnects. Nanotechnology, 2013, 24, 115707.	1.3	66
9	Enhancement in the photodetection of ZnO nanowires by introducing surface-roughness-induced traps. Nanotechnology, 2011, 22, 205204.	1.3	52
10	Thermal stability of multilayer graphene films synthesized by chemical vapor deposition and stained by metallic impurities. Nanotechnology, 2012, 23, 075702.	1.3	52
11	Graphene transfer in vacuum yielding a high quality graphene. Carbon, 2015, 93, 286-294.	5.4	33
12	A study of graphene films synthesized on nickel substrates: existence and origin of small-base-area peaks. Nanotechnology, 2011, 22, 045706.	1.3	27
13	A facile process to achieve hysteresis-free and fully stabilized graphene field-effect transistors. Nanoscale, 2015, 7, 4013-4019.	2.8	25
14	Enhanced characteristics of pentacene field-effect transistors with graphene electrodes and substrate treatments. Applied Physics Letters, 2011, 99, 083306.	1.5	24
15	Rigid substrate process to achieve high mobility in graphene field-effect transistors on a flexible substrate. Carbon, 2014, 68, 791-797.	5.4	23
16	Influence of extrinsic factors on accuracy of mobility extraction in graphene metal-oxide-semiconductor field effect transistors. Applied Physics Letters, 2013, 102, .	1.5	16
17	Nonvolatile resistive switching in Pr0.7Ca0.3MnO3 devices using multilayer graphene electrodes. Applied Physics Letters, 2011, 98, 032105.	1.5	15
18	Quantitatively estimating defects in graphene devices using discharge current analysis method. Scientific Reports, 2015, 4, 4886.	1.6	15

SANGCHUL LEE

#	ARTICLE	IF	CITATIONS
19	Contact resistance improvement by the modulation of peripheral length to area ratio of graphene contact pattern. Applied Physics Letters, 2015, 106, .	1.5	11
20	Quantitative analysis of interfacial reactions at a graphene/SiO2 interface using the discharge current analysis method. Applied Physics Letters, 2014, 104, 151604.	1.5	6
21	Characterization on Improved Effective Mobility of Pentacene Organic Field-Effect Transistors Using Graphene Electrodes. Japanese Journal of Applied Physics, 2012, 51, 02BK09.	0.8	3
22	Characterization of ZnO Nanowire Field Effect Transistors by Fast Hydrogen Peroxide Solution Treatment. Japanese Journal of Applied Physics, 2012, 51, 035001.	0.8	2
23	Characterization on Improved Effective Mobility of Pentacene Organic Field-Effect Transistors Using Graphene Electrodes. Japanese Journal of Applied Physics, 2012, 51, 02BK09.	0.8	2
24	Triangular-Pulse Measurement for Hysteresis of High-Performance and Flexible Graphene Field-Effect Transistors. IEEE Electron Device Letters, 2014, 35, 277-279.	2.2	1
25	Contributions to High Resolution and In Situ Electron Microscopy. Microscopy and Microanalysis, 2018, 24, 10-11.	0.2	1
26	Outstanding flexibility of organic memory devices with transparent graphene top electrodes. , 2011, , .		0
27	Large-Area, Transparent And Conductive Graphene Electrode For Bulk-Heterojunction Photovoltaic Devices. , 2011, , .		0
28	Towards three-dimensional integration of two-dimensional active logic circuits using low temperature multilayer stacking of GFETs. , 2014, , .		0
29	Characterization of ZnO Nanowire Field Effect Transistors by Fast Hydrogen Peroxide Solution Treatment. Japanese Journal of Applied Physics, 2012, 51, 035001.	0.8	Ο