
Ana Mincholé

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10432123/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Computational techniques for ECG analysis and interpretation in light of their contribution to medical advances. Journal of the Royal Society Interface, 2018, 15, 20170821.	1.5	143
2	Development, calibration, and validation of a novel human ventricular myocyte model in health, disease, and drug block. ELife, 2019, 8, .	2.8	131
3	Mechanisms of pro-arrhythmic abnormalities in ventricular repolarisation and anti-arrhythmic therapies in human hypertrophic cardiomyopathy. Journal of Molecular and Cellular Cardiology, 2016, 96, 72-81.	0.9	102
4	Artificial intelligence for the electrocardiogram. Nature Medicine, 2019, 25, 22-23.	15.2	85
5	Machine learning in the electrocardiogram. Journal of Electrocardiology, 2019, 57, S61-S64.	0.4	79
6	Early afterdepolarizations promote transmural reentry in ischemic human ventricles with reduced repolarization reserve. Progress in Biophysics and Molecular Biology, 2016, 120, 236-248.	1.4	74
7	Electrophysiological properties of computational human ventricular cell action potential models under acute ischemic conditions. Progress in Biophysics and Molecular Biology, 2017, 129, 40-52.	1.4	66
8	Human ventricular activation sequence and the simulation of the electrocardiographic QRS complex and its variability in healthy and intraventricular block conditions. Europace, 2016, 18, iv4-iv15.	0.7	62
9	Distinct ECG Phenotypes Identified in Hypertrophic Cardiomyopathy Using Machine Learning Associate With Arrhythmic Risk Markers. Frontiers in Physiology, 2018, 9, 213.	1.3	57
10	Quantification of Restitution Dispersion From the Dynamic Changes of the \$T\$-Wave Peak to End, Measured at the Surface ECG. IEEE Transactions on Biomedical Engineering, 2011, 58, 1172-1182.	2.5	39
11	Sudden cardiac death and pump failure death prediction in chronic heart failure by combining ECG and clinical markers in an integrated risk model. PLoS ONE, 2017, 12, e0186152.	1.1	38
12	MRI-Based Computational Torso/Biventricular Multiscale Models to Investigate the Impact of Anatomical Variability on the ECG QRS Complex. Frontiers in Physiology, 2019, 10, 1103.	1.3	35
13	Automatic SVM classification of sudden cardiac death and pump failure death from autonomic and repolarization ECG markers. Journal of Electrocardiology, 2015, 48, 551-557.	0.4	32
14	Tâ€Wave Morphology Restitution Predicts Sudden Cardiac Death in Patients With Chronic Heart Failure. Journal of the American Heart Association, 2017, 6, .	1.6	32
15	Electrocardiogram phenotypes in hypertrophic cardiomyopathy caused by distinct mechanisms: apico-basal repolarization gradients vs. Purkinje-myocardial coupling abnormalities. Europace, 2018, 20, iii102-iii112.	0.7	29
16	High arrhythmic risk in antero-septal acute myocardial ischemia is explained by increased transmural reentry occurrence. Scientific Reports, 2019, 9, 16803.	1.6	20
17	Inference of ventricular activation properties from non-invasive electrocardiography. Medical Image Analysis, 2021, 73, 102143.	7.0	19

18 Deep Learning Based QRS Multilead Delineator in Electrocardiogram Signals. , 0, , .

14

#	Article	IF	CITATIONS
19	Discrimination between ischemic and artifactual ST segment events in Holter recordings. Biomedical Signal Processing and Control, 2010, 5, 21-31.	3.5	12
20	Detection of body position changes from the ECG using a Laplacian noise model. Biomedical Signal Processing and Control, 2014, 14, 189-196.	3.5	9
21	Assessing instantaneous QT variability dynamics within a point-process nonlinear framework. , 2014, , .		2