
Suvendra N Bhattacharyya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10430895/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight?. Nature Reviews Genetics, 2008, 9, 102-114.	16.3	4,577
2	Inhibition of Translational Initiation by Let-7 MicroRNA in Human Cells. Science, 2005, 309, 1573-1576.	12.6	1,247
3	Relief of microRNA-Mediated Translational Repression in Human Cells Subjected to Stress. Cell, 2006, 125, 1111-1124.	28.9	1,186
4	Repression of protein synthesis by miRNAs: how many mechanisms?. Trends in Cell Biology, 2007, 17, 118-126.	7.9	1,007
5	Obstacles and opportunities in the functional analysis of extracellular vesicle RNA – an ISEV position paper. Journal of Extracellular Vesicles, 2017, 6, 1286095.	12.2	561
6	The chromatoid body of male germ cells: Similarity with processing bodies and presence of Dicer and microRNA pathway components. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 2647-2652.	7.1	326
7	Leishmania donovani Targets Dicer1 to Downregulate miR-122, Lower Serum Cholesterol, and Facilitate Murine Liver Infection. Cell Host and Microbe, 2013, 13, 277-288.	11.0	190
8	Biological membranes in EV biogenesis, stability, uptake, and cargo transfer: an ISEV position paper arising from the ISEV membranes and EVs workshop. Journal of Extracellular Vesicles, 2019, 8, 1684862.	12.2	177
9	HuR protein attenuates miRNA-mediated repression by promoting miRISC dissociation from the target RNA. Nucleic Acids Research, 2012, 40, 5088-5100.	14.5	162
10	Dendrites of Mammalian Neurons Contain Specialized P-Body-Like Structures That Respond to Neuronal Activation. Journal of Neuroscience, 2008, 28, 13793-13804.	3.6	153
11	Reversible HuRâ€micro <scp>RNA</scp> binding controls extracellular export of miRâ€122 and augments stress response. EMBO Reports, 2016, 17, 1184-1203.	4.5	139
12	Insulin-like growth factor-1 prevents miR-122 production in neighbouring cells to curtail its intercellular transfer to ensure proliferation of human hepatoma cells. Nucleic Acids Research, 2014, 42, 7170-7185.	14.5	79
13	mRNA Targeting to Endoplasmic Reticulum Precedes Ago Protein Interaction and MicroRNA (miRNA)-mediated Translation Repression in Mammalian Cells. Journal of Biological Chemistry, 2015, 290, 24650-24656.	3.4	67
14	A transient reversal of miRNAâ€mediated repression controls macrophage activation. EMBO Reports, 2013, 14, 1008-1016.	4.5	61
15	Polysome arrest restricts miRNA turnover by preventing exosomal export of miRNA in growth-retarded mammalian cells. Molecular Biology of the Cell, 2015, 26, 1072-1083.	2.1	41
16	Spatiotemporal Uncoupling of MicroRNA-Mediated Translational Repression and Target RNA Degradation Controls MicroRNP Recycling in Mammalian Cells. Molecular and Cellular Biology, 2017, 37, .	2.3	41
17	Leishmania donovani restricts mitochondrial dynamics to enhance miRNP stability and target RNA repression in host macrophages. Molecular Biology of the Cell, 2017, 28, 2091-2105.	2.1	38
18	Target-dependent biogenesis of cognate microRNAs in human cells. Nature Communications, 2016, 7, 12200.	12.8	32

#	Article	IF	CITATIONS
19	Argonautes and Company: Sailing against the Wind. Cell, 2007, 128, 1027-1028.	28.9	28
20	MicroRNA exporter HuR clears the internalized pathogens by promoting proâ€inflammatory response in infected macrophages. EMBO Molecular Medicine, 2020, 12, e11011.	6.9	24
21	Retrograde trafficking of Argonaute 2 acts as a rate-limiting step for de novo miRNP formation on endoplasmic reticulum–attached polysomes in mammalian cells. Life Science Alliance, 2020, 3, e201800161.	2.8	23
22	Probing the molecular mechanism of aggressive infection by antimony resistant Leishmania donovani. Cytokine, 2021, 145, 155245.	3.2	15
23	Non-canonical argonaute loading of extracellular vesicle-derived exogenous single-stranded miRNA in recipient cells. Journal of Cell Science, 2021, 134, .	2.0	14
24	Rheb-mTOR activation rescues AÎ ² -induced cognitive impairment and memory function by restoring miR-146 activity in glial cells. Molecular Therapy - Nucleic Acids, 2021, 24, 868-887.	5.1	14
25	GW182 Proteins Restrict Extracellular Vesicle-Mediated Export of MicroRNAs in Mammalian Cancer Cells. Molecular and Cellular Biology, 2021, 41, .	2.3	10
26	Leishmania survives by exporting miR-146a from infected to resident cells to subjugate inflammation. Life Science Alliance, 2022, 5, e202101229.	2.8	7
27	Inhibition of extracellular vesicle-associated MMP2 abrogates intercellular hepatic miR-122 transfer to liver macrophages and curtails inflammation. IScience, 2021, 24, 103428.	4.1	6
28	Target-Dependent Coordinated Biogenesis of Secondary MicroRNAs by miR-146a Balances Macrophage Activation Processes. Molecular and Cellular Biology, 2022, 42, e0045221.	2.3	2
29	Mitochondria Control mTORC1 Activity Linked Compartmentalization of eIF4E to Regulate Extracellular Export of microRNAs. Journal of Cell Science, 2020, 133, .	2.0	1