
Selvam Subramaniyan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10430357/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	All-Polymer Solar Cells with 3.3% Efficiency Based on Naphthalene Diimide-Selenophene Copolymer Acceptor. Journal of the American Chemical Society, 2013, 135, 14960-14963.	13.7	363
2	Nonfullerene Polymer Solar Cells with 8.5% Efficiency Enabled by a New Highly Twisted Electron Acceptor Dimer. Advanced Materials, 2016, 28, 124-131.	21.0	250
3	Beyond Fullerenes: Design of Nonfullerene Acceptors for Efficient Organic Photovoltaics. Journal of the American Chemical Society, 2014, 136, 14589-14597.	13.7	213
4	Effects of Side Chains on Thiazolothiazoleâ€Based Copolymer Semiconductors for High Performance Solar Cells. Advanced Energy Materials, 2011, 1, 854-860.	19.5	183
5	Allâ€Polymer Bulk Heterojuction Solar Cells with 4.8% Efficiency Achieved by Solution Processing from a Coâ€Solvent. Advanced Materials, 2014, 26, 6080-6085.	21.0	161
6	Fineâ€Tuning the 3D Structure of Nonfullerene Electron Acceptors Toward Highâ€Performance Polymer Solar Cells. Advanced Materials, 2015, 27, 3266-3272.	21.0	158
7	Charge Photogeneration for a Series of Thiazoloâ€Thiazole Donor Polymers Blended with the Fullerene Electron Acceptors PCBM and ICBA. Advanced Functional Materials, 2013, 23, 3286-3298.	14.9	155
8	Tetraazabenzodifluoranthene Diimides: Building Blocks for Solutionâ€Processable nâ€Type Organic Semiconductors. Angewandte Chemie - International Edition, 2013, 52, 5513-5517.	13.8	154
9	Benzobisthiazole-Based Donor–Acceptor Copolymer Semiconductors for Photovoltaic Cells and Highly Stable Field-Effect Transistors. Macromolecules, 2011, 44, 7207-7219.	4.8	101
10	Photoinduced Hole Transfer Becomes Suppressed with Diminished Driving Force in Polymerâ€Fullerene Solar Cells While Electron Transfer Remains Active. Advanced Functional Materials, 2013, 23, 1238-1249.	14.9	101
11	Enhanced Open Circuit Voltage and Efficiency of Donor–Acceptor Copolymer Solar Cells by Using Indene-C60 Bisadduct. Chemistry of Materials, 2012, 24, 1995-2001.	6.7	100
12	Sequential Processing for Organic Photovoltaics: Design Rules for Morphology Control by Tailored Semiâ€Orthogonal Solvent Blends. Advanced Energy Materials, 2015, 5, 1402020.	19.5	82
13	Photoinduced Charge Transfer and Polaron Dynamics in Polymer and Hybrid Photovoltaic Thin Films: Organic vs Inorganic Acceptors. Journal of Physical Chemistry C, 2011, 115, 24403-24410.	3.1	74
14	New Thiazolothiazole Copolymer Semiconductors for Highly Efficient Solar Cells. Macromolecules, 2011, 44, 6245-6248.	4.8	72
15	High Mobility Thiazole–Diketopyrrolopyrrole Copolymer Semiconductors for High Performance Field-Effect Transistors and Photovoltaic Devices. Macromolecules, 2012, 45, 9029-9037.	4.8	70
16	Side chain engineering of n-type conjugated polymer enhances photocurrent and efficiency of all-polymer solar cells. Chemical Communications, 2014, 50, 10801.	4.1	62
17	Charge generation and energy transfer in hybrid polymer/infrared quantum dot solar cells. Energy and Environmental Science, 2013, 6, 769.	30.8	51
18	Bis(Naphthalene Imide)diphenylanthrazolines: A New Class of Electron Acceptors for Efficient Nonfullerene Organic Solar Cells and Applicable to Multiple Donor Polymers. Advanced Energy Materials, 2015, 5, 1402041.	19.5	48

#	Article	IF	CITATIONS
19	Air-Stable Ambipolar Field-Effect Transistors and Complementary Logic Circuits from Solution-Processed n/p Polymer Heterojunctions. ACS Applied Materials & Interfaces, 2010, 2, 2974-2977.	8.0	46
20	Hole Transfer from Low Band Gap Quantum Dots to Conjugated Polymers in Organic/Inorganic Hybrid Photovoltaics. Journal of Physical Chemistry Letters, 2013, 4, 280-284.	4.6	38
21	Thiazolothiazole Donor–Acceptor Conjugated Polymer Semiconductors for Photovoltaic Applications. Macromolecules, 2014, 47, 4199-4209.	4.8	35
22	The effects of Ta ₂ O ₅ –ZnO films as cathodic buffer layers in inverted polymer solar cells. Journal of Materials Chemistry A, 2014, 2, 9361-9370.	10.3	33
23	Barbiturate end-capped non-fullerene acceptors for organic solar cells: tuning acceptor energetics to suppress geminate recombination losses. Chemical Communications, 2018, 54, 2966-2969.	4.1	29
24	Naphthobisthiazole diimide-based n-type polymer semiconductors: synthesis, π-stacking, field-effect charge transport, and all-polymer solar cells. Polymer Chemistry, 2014, 5, 5707.	3.9	25
25	Driving Force and Optical Signatures of Bipolaron Formation in Chemically Doped Conjugated Polymers. Advanced Materials, 2021, 33, e2000228.	21.0	21
26	Low-Vapor-Pressure Solvent Additives Function as Polymer Swelling Agents in Bulk Heterojunction Organic Photovoltaics. Journal of Physical Chemistry C, 2018, 122, 16574-16588.	3.1	17
27	Solar Cells: Fineâ€Tuning the 3D Structure of Nonfullerene Electron Acceptors Toward Highâ€Performance Polymer Solar Cells (Adv. Mater. 21/2015). Advanced Materials, 2015, 27, 3340-3340.	21.0	2
28	The effect of quantum dot ligand treatements on polaron lifetime and photovoltaic device performance. , 2011, , .		0