Togawa Rc

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1042947/publications.pdf

Version: 2024-02-01

759233 713466 24 523 12 21 citations h-index g-index papers 26 26 26 943 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Metabarcoding versus mapping unassembled shotgun reads for identification of prey consumed by arthropod epigeal predators. GigaScience, 2022, 11 , .	6.4	7
2	Molecular characterization of the Rpv3 locus towards the development of KASP markers for downy mildew resistance in grapevine (Vitis spp.). Euphytica, 2022, 218, 1.	1.2	0
3	Dissecting protein domain variability in the core RNA interference machinery of five insect orders. RNA Biology, 2021, 18, 1653-1681.	3.1	16
4	Transcriptome profile of drought responsive candidate genes in varieties of citrus rootstocks with different tolerance strategies. Scientia Horticulturae, 2021, 277, 109838.	3.6	5
5	The Mi-EFF1/Minc17998 effector interacts with the soybean GmHub6 protein to promote host plant parasitism by Meloidogyne incognita. Physiological and Molecular Plant Pathology, 2021, 114, 101630.	2.5	8
6	Comparative Genomics Reveals Novel Target Genes towards Specific Control of Plant-Parasitic Nematodes. Genes, 2020, 11, 1347.	2.4	29
7	Transcriptome Profiling-Based Analysis of Carbohydrate-Active Enzymes in Aspergillus terreus Involved in Plant Biomass Degradation. Frontiers in Bioengineering and Biotechnology, 2020, 8, 564527.	4.1	12
8	MiDaf16-like and MiSkn1-like gene families are reliable targets to develop biotechnological tools for the control and management of Meloidogyne incognita. Scientific Reports, 2020, 10, 6991.	3.3	18
9	Spring Is Coming: Genetic Analyses of the Bud Break Date Locus Reveal Candidate Genes From the Cold Perception Pathway to Dormancy Release in Apple (Malus × domestica Borkh.). Frontiers in Plant Science, 2019, 10, 33.	3.6	28
10	Systemic and sex-biased regulation of OBP expression under semiochemical stimuli. Scientific Reports, 2018, 8, 6035.	3.3	12
11	Analysis of the Transcriptome in Aspergillus tamarii During Enzymatic Degradation of Sugarcane Bagasse. Frontiers in Bioengineering and Biotechnology, 2018, 6, 123.	4.1	26
12	Comparative root transcriptome of wild Arachis reveals NBS-LRR genes related to nematode resistance. BMC Plant Biology, 2018, 18, 159.	3.6	27
13	Gene expression analysis in <i>Musa acuminata</i> during compatible interactions with <i>Meloidogyne incognita</i> . Annals of Botany, 2017, 119, mcw272.	2.9	22
14	Mitogenome sequence accuracy using different elucidation methods. PLoS ONE, 2017, 12, e0179971.	2.5	15
15	GPCRs from fusarium graminearum detection, modeling and virtual screening - the search for new routes to control head blight disease. BMC Bioinformatics, 2016, 17, 463.	2.6	7
16	First Microsatellite Markers Developed from Cupuassu ESTs: Application in Diversity Analysis and Cross-Species Transferability to Cacao. PLoS ONE, 2016, 11, e0151074.	2.5	10
17	Knock-Down of Heat-Shock Protein 90 and Isocitrate Lyase Gene Expression Reduced Root-Knot Nematode Reproduction. Phytopathology, 2015, 105, 628-637.	2.2	29
18	A Storage Policy for a Hybrid Federated Cloud platform: A Case Study for Bioinformatics. , 2014, , .		3

Togawa Rc

#	Article	IF	CITATION
19	Transcription profile of soybean-root-knot nematode interaction reveals a key role of phythormones in the resistance reaction. BMC Genomics, 2013, 14, 322.	2.8	56
20	Transcriptome Analysis in Cotton Boll Weevil (Anthonomus grandis) and RNA Interference in Insect Pests. PLoS ONE, 2013, 8, e85079.	2.5	52
21	Worker Honeybee Brain Proteome. Journal of Proteome Research, 2012, 11, 1485-1493.	3.7	48
22	Global transcriptome analysis of two wild relatives of peanut under drought and fungi infection. BMC Genomics, 2012, 13, 387.	2.8	83
23	Differentially expressed genes in cotton plant genotypes infected with Meloidogyne incognita. Plant Science, 2009, 177, 492-497.	3.6	9
24	A new fieldâ€ŧested electronic system for data gathering, recording, transfer and dissemination via the World Wide Web. Taxon, 1998, 47, 381-386.	0.7	0