
ÄurÄ'a VasićRaÄki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10428377/publications.pdf Version: 2024-02-01

<u> Αμρά'λ Μλειάτ-Ρλάκι</u>

#	Article	IF	CITATIONS
1	Thermostability Engineering of a Class II Pyruvate Aldolase from <i>Escherichia coli</i> by <i>in Vivo</i> Folding Interference. ACS Sustainable Chemistry and Engineering, 2021, 9, 5430-5436.	6.7	14
2	A cascade reaction for the synthesis of d-fagomine precursor revisited: Kinetic insight and understanding of the system. New Biotechnology, 2021, 63, 19-28.	4.4	2
3	Model-based optimization of the enzymatic aldol addition of propanal to formaldehyde: A first step towards enzymatic synthesis of 3-hydroxybutyric acid. Chemical Engineering Research and Design, 2019, 150, 140-152.	5.6	6
4	Reactor and microreactor performance and kinetics of the aldol addition of dihydroxyacetone to benzyloxycarbonyl- <i>N</i> -3-aminopropanal catalyzed by D-fructose-6-phosphate aldolase variant A129G. Chemical Engineering Communications, 2019, 206, 927-939.	2.6	3
5	2â€Deoxyriboseâ€5â€phosphate aldolase from <i>Thermotoga maritima</i> in the synthesis of a statin sideâ€chain precursor: characterization, modeling and optimization. Journal of Chemical Technology and Biotechnology, 2019, 94, 1832-1842.	3.2	11
6	Different strategies for multi-enzyme cascade reaction for chiral vic-1,2-diol production. Bioprocess and Biosystems Engineering, 2018, 41, 793-802.	3.4	12
7	Mathematical model of the MenD-catalyzed 1,4-addition (Stetter reaction) of α-ketoglutaric acid to acrylonitrile. Journal of Biotechnology, 2018, 268, 71-80.	3.8	10
8	Stereoselective synthesis of (1S,2S)-1-phenylpropane-1,2-diol by cell-free extract of Lactobacillus brevis. Green Processing and Synthesis, 2016, 5, .	3.4	0
9	A new concept for production of (3S,4R)-6-[(benzyloxycarbonyl)amino]-5,6-dideoxyhex-2-ulose, a precursor of <scp>d</scp> -fagomine. RSC Advances, 2015, 5, 69819-69828.	3.6	10
10	A Mathematical Model of Oxidative Deamination of Amino Acid Catalyzed by Two d-Amino Acid Oxidases and Influence of Aeration on Enzyme Stability. Applied Biochemistry and Biotechnology, 2014, 172, 3092-3105.	2.9	10
11	Coenzyme regeneration catalyzed by NADH oxidase from Lactococcus lactis. Biochemical Engineering Journal, 2014, 88, 12-18.	3.6	14
12	Mathematical modeling of maize starch liquefaction catalyzed by α-amylases from Bacillus licheniformis: effect of calcium, pH and temperature. Bioprocess and Biosystems Engineering, 2013, 36, 117-126.	3.4	9
13	Complete starch hydrolysis by the synergistic action of amylase and glucoamylase: impact of calcium ions. Bioprocess and Biosystems Engineering, 2013, 36, 1555-1562.	3.4	26
14	Effect of Different Variables on the Efficiency of the Baker's Yeast Cell Disruption Process to Obtain Alcohol Dehydrogenase Activity. Applied Biochemistry and Biotechnology, 2013, 169, 1039-1055.	2.9	4
15	Evaluation of factors influencing the enantioselective enzymatic esterification of lactic acid in ionic liquid. Bioprocess and Biosystems Engineering, 2012, 35, 625-635.	3.4	18
16	Optimization of Laccase Production by Trametes versicolor Cultivated on Industrial Waste. Applied Biochemistry and Biotechnology, 2012, 166, 36-46.	2.9	36
17	Mathematical model for Trametes versicolor growth in submerged cultivation. Bioprocess and Biosystems Engineering, 2010, 33, 749-758.	3.4	11
18	Comparison of the l-malic acid production by isolated fumarase and fumarase in permeabilized baker's yeast cells. Enzyme and Microbial Technology, 2007, 41, 605-612.	3.2	28

#	Article	IF	CITATIONS
19	Production of L-Malic Acid by Permeabilized Cells of Commercial Saccharomyces Sp. Strains. Biotechnology Letters, 2005, 27, 1835-1839.	2.2	31
20	Kinetic characterisation of enzymatic esterification in a solvent system: adsorptive control of water with molecular sieves. Journal of Molecular Catalysis B: Enzymatic, 2001, 11, 921-928.	1.8	38