## **Devang Khakhar**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1042837/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                               | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Mixing and Segregation of Granular Materials. Annual Review of Fluid Mechanics, 2000, 32, 55-91.                                                                      | 10.8 | 582       |
| 2  | Studies on poly(vinylidene fluoride)–clay nanocomposites: Effect of different clay modifiers.<br>Polymer, 2008, 49, 3486-3499.                                        | 1.8  | 223       |
| 3  | Radial segregation of granular mixtures in rotating cylinders. Physics of Fluids, 1997, 9, 3600-3614.                                                                 | 1.6  | 213       |
| 4  | Transverse flow and mixing of granular materials in a rotating cylinder. Physics of Fluids, 1997, 9, 31-43.                                                           | 1.6  | 212       |
| 5  | Analysis of chaotic mixing in two model systems. Journal of Fluid Mechanics, 1986, 172, 419.                                                                          | 1.4  | 156       |
| 6  | Segregation-driven organization in chaotic granular flows. Proceedings of the National Academy of<br>Sciences of the United States of America, 1999, 96, 11701-11706. | 3.3  | 149       |
| 7  | A case study of chaotic mixing in deterministic flows: The partitioned-pipe mixer. Chemical Engineering<br>Science, 1987, 42, 2909-2926.                              | 1.9  | 139       |
| 8  | Scaling relations for granular flow in quasi-two-dimensional rotating cylinders. Physical Review E, 2001, 64, 031302.                                                 | 0.8  | 138       |
| 9  | Polyurethane Foamâ^'Clay Nanocomposites:Â Nanoclays as Cell Openers. Industrial & Engineering<br>Chemistry Research, 2006, 45, 7126-7134.                             | 1.8  | 137       |
| 10 | Axial segregation of particles in a horizontal rotating cylinder. Chemical Engineering Science, 1991, 46, 1513-1517.                                                  | 1.9  | 127       |
| 11 | Surface flow of granular materials: model and experiments in heap formation. Journal of Fluid<br>Mechanics, 2001, 441, 255-264.                                       | 1.4  | 111       |
| 12 | Density difference-driven segregation in a dense granular flow. Journal of Fluid Mechanics, 2013, 717, 643-669.                                                       | 1.4  | 105       |
| 13 | Mixing and segregation of granular materials in chute flows. Chaos, 1999, 9, 594-610.                                                                                 | 1.0  | 104       |
| 14 | Chaotic mixing in a bounded three-dimensional flow. Journal of Fluid Mechanics, 2000, 417, 265-301.                                                                   | 1.4  | 99        |
| 15 | Mixing and Dispersion of Viscous Liquids and Powdered Solids. Advances in Chemical Engineering, 1999, 25, 105-204.                                                    | 0.5  | 98        |
| 16 | Computational studies of granular mixing. Powder Technology, 2000, 109, 72-82.                                                                                        | 2.1  | 98        |
| 17 | Breakup of liquid threads in linear flows. International Journal of Multiphase Flow, 1987, 13, 71-86.                                                                 | 1.6  | 91        |
| 18 | Rheology of binary granular mixtures in the dense flow regime. Physics of Fluids, 2011, 23, .                                                                         | 1.6  | 82        |

| #  | Article                                                                                                                                                         | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Visualization of Three-Dimensional Chaos. , 1998, 281, 683-686.                                                                                                 |     | 81        |
| 20 | Deformation and breakup of slender drops in linear flows. Journal of Fluid Mechanics, 1986, 166, 265.                                                           | 1.4 | 77        |
| 21 | Modeling of the Dynamics of Water and R-11 blown polyurethane foam formation. Polymer<br>Engineering and Science, 1994, 34, 642-649.                            | 1.5 | 73        |
| 22 | Segregation of granular materials in rotating cylinders. Physica A: Statistical Mechanics and Its Applications, 2003, 318, 129-136.                             | 1.2 | 73        |
| 23 | Rigid polyurethane–clay nanocomposite foams: Preparation and properties. Journal of Applied Polymer<br>Science, 2007, 103, 2802-2809.                           | 1.3 | 72        |
| 24 | Chaotic mixing of granular materials in two-dimensional tumbling mixers. Chaos, 1999, 9, 195-205.                                                               | 1.0 | 64        |
| 25 | Continuum model of mixing and size segregation in a rotating cylinder: concentration-flow coupling and streak formation. Powder Technology, 2001, 116, 232-245. | 2.1 | 63        |
| 26 | Rheology of surface granular flows. Journal of Fluid Mechanics, 2007, 571, 1-32.                                                                                | 1.4 | 61        |
| 27 | Reticulated vitreous carbon from polyurethane foam–clay composites. Carbon, 2007, 45, 531-535.                                                                  | 5.4 | 60        |
| 28 | Axial transport of granular solids in horizontal rotating cylinders. Part 1: Theory. Powder<br>Technology, 1991, 67, 145-151.                                   | 2.1 | 55        |
| 29 | Modeling of the dynamics of R-11 blown polyurethane foam formation. Polymer Engineering and Science, 1994, 34, 632-641.                                         | 1.5 | 55        |
| 30 | Formation and characterization of polyurethane—vermiculite clay nanocomposite foams. Polymer<br>Engineering and Science, 2008, 48, 1778-1784.                   | 1.5 | 52        |
| 31 | Fundamental research in heaping, mixing, and segregation of granular materials: challenges and perspectives. Powder Technology, 2001, 121, 117-122.             | 2.1 | 50        |
| 32 | Axial transport of granular solids in rotating cylinders. Part 2: Experiments in a non-flow system.<br>Powder Technology, 1991, 67, 153-162.                    | 2.1 | 48        |
| 33 | Coalescence in Surfactant-Stabilized Emulsions Subjected to Shear Flow. Langmuir, 2001, 17, 2647-2655.                                                          | 1.6 | 46        |
| 34 | Studies on Î $\pm$ to Î <sup>2</sup> phase transformations in mechanically deformed PVDF films. Journal of Applied Polymer Science, 2010, 117, 3491-3497.       | 1.3 | 46        |
| 35 | Self-Organization in Granular Slurries. Physical Review Letters, 2001, 86, 3771-3774.                                                                           | 2.9 | 45        |
| 36 | Dispersion of solids in nonhomogeneous viscous flows. Chemical Engineering Science, 1998, 53, 1803-1817.                                                        | 1.9 | 39        |

| #  | Article                                                                                                                                                                                             | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Scaling of granular flow processes: From surface flows to design rules. AICHE Journal, 2002, 48, 2157-2166.                                                                                         | 1.8  | 39        |
| 38 | Enhancement of polymerization rates for rigid rod-like molecules by shearing. Nature, 1992, 360, 53-55.                                                                                             | 13.7 | 38        |
| 39 | Mixing of viscous immiscible liquids. Part 1: Computational models for strong–weak and continuous<br>flow systems. Chemical Engineering Science, 2001, 56, 5511-5529.                               | 1.9  | 38        |
| 40 | Solid-Fluid Transition in a Granular Shear Flow. Physical Review Letters, 2004, 93, 068001.                                                                                                         | 2.9  | 38        |
| 41 | Phosphoniumâ€based layered silicate—Poly(ethylene terephthalate) nanocomposites: Stability, thermal and mechanical properties. Journal of Applied Polymer Science, 2009, 113, 1720-1732.            | 1.3  | 37        |
| 42 | Stretching induced phase transformations in melt extruded poly(vinylidene fluoride) cast films:<br>Effect of cast roll temperature and speed. Polymer Engineering and Science, 2007, 47, 1992-2004. | 1.5  | 36        |
| 43 | Radial mixing of granular materials in a rotating cylinder: Experimental determination of particle self-diffusivity. Physics of Fluids, 2005, 17, 013101.                                           | 1.6  | 34        |
| 44 | A study of the rheology of planar granular flow of dumbbells using discrete element method simulations. Physics of Fluids, 2016, 28, .                                                              | 1.6  | 34        |
| 45 | Regulation of Cell Structure in Water Blown Rigid Polyurethane Foam. Macromolecular Symposia,<br>2004, 216, 241-254.                                                                                | 0.4  | 31        |
| 46 | Phase transformation and enhancement of toughness in polyvinylidene fluoride by onium salts.<br>Journal of Polymer Science, Part B: Polymer Physics, 2011, 49, 1339-1344.                           | 2.4  | 31        |
| 47 | Suppression of Coalescence in Surfactant Stabilized Emulsions by Shear Flow. Physical Review Letters, 1999, 83, 2461-2464.                                                                          | 2.9  | 30        |
| 48 | MIXING OF GRANULAR MATERIALS: A TEST-BED DYNAMICAL SYSTEM FOR PATTERN FORMATION.<br>International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 1999, 09, 1467-1484.        | 0.7  | 30        |
| 49 | Numerical Simulation of the Sedimentation of a Sphere in a Sheared Granular Fluid: A Granular Stokes<br>Experiment. Physical Review Letters, 2011, 107, 108001.                                     | 2.9  | 30        |
| 50 | Fluid mixing (stretching) by time periodic sequences for weak flows. Physics of Fluids, 1986, 29, 3503.                                                                                             | 1.4  | 29        |
| 51 | Formation of integral skin polyurethane foams. Polymer Engineering and Science, 1999, 39, 164-176.                                                                                                  | 1.5  | 29        |
| 52 | SURFACE GRANULAR FLOWS: TWO RELATED EXAMPLES. International Journal of Modeling, Simulation, and Scientific Computing, 2001, 04, 407-417.                                                           | 0.9  | 27        |
| 53 | Radial segregation of ternary granular mixtures in rotating cylinders. Granular Matter, 2011, 13, 475-486.                                                                                          | 1.1  | 27        |
| 54 | Rheology of a gas-fluidized bed. Powder Technology, 1995, 83, 29-34.                                                                                                                                | 2.1  | 26        |

| #  | Article                                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Mixing of viscous immiscible liquids. Part 2: Overemulsification—interpretation and use. Chemical<br>Engineering Science, 2001, 56, 5531-5537.                                                                                            | 1.9 | 24        |
| 56 | A Simple Model for Granular Convection. Physical Review Letters, 1997, 79, 829-832.                                                                                                                                                       | 2.9 | 23        |
| 57 | An experimental study of the flow of nonspherical grains in a rotating cylinder. AICHE Journal, 2017, 63, 4307-4315.                                                                                                                      | 1.8 | 23        |
| 58 | Effect of monomer temperature on foaming and properties of flexible polyurethane foams. Journal of Applied Polymer Science, 2007, 105, 3439-3443.                                                                                         | 1.3 | 22        |
| 59 | Dense granular flow of mixtures of spheres and dumbbells down a rough inclined plane: Segregation and rheology. Physics of Fluids, 2019, 31, .                                                                                            | 1.6 | 22        |
| 60 | Mechanistic origins of multi-scale reinforcements in segmented polyurethane-clay nanocomposites.<br>Polymer, 2014, 55, 5198-5210.                                                                                                         | 1.8 | 21        |
| 61 | Experimental evidence for a description of granular segregation in terms of the effective temperature. Europhysics Letters, 2008, 83, 54004.                                                                                              | 0.7 | 20        |
| 62 | Fluidization characteristics of lithium-titanate in gas-solid fluidized bed. Fusion Engineering and Design, 2011, 86, 393-398.                                                                                                            | 1.0 | 20        |
| 63 | Characterizing the nanoclay induced constrained amorphous region in model segmented<br>polyurethane–urea/clay nanocomposites and its implications on gas barrier properties. Physical<br>Chemistry Chemical Physics, 2016, 18, 1487-1499. | 1.3 | 20        |
| 64 | Diffusionâ€limited polymerization of rigid rodlike molecules: Dilute solutions. Journal of Chemical<br>Physics, 1992, 96, 7125-7134.                                                                                                      | 1.2 | 18        |
| 65 | Breakage of vesicles in a simple shear flow. Soft Matter, 2019, 15, 1979-1987.                                                                                                                                                            | 1.2 | 18        |
| 66 | Internal avalanches in a granular medium. Physical Review E, 1998, 58, R6935-R6938.                                                                                                                                                       | 0.8 | 17        |
| 67 | Rheology and Mixing of Granular Materials. Macromolecular Materials and Engineering, 2011, 296, 278-289.                                                                                                                                  | 1.7 | 17        |
| 68 | Sidewall-friction-driven ordering transition in granular channel flows: Implications for granular rheology. Physical Review E, 2017, 96, 050901.                                                                                          | 0.8 | 17        |
| 69 | Analysis of granular rheology in a quasi-two-dimensional slow flow by means of discrete element<br>method based simulations. Physics of Fluids, 2020, 32, .                                                                               | 1.6 | 17        |
| 70 | Optimization of the structure of integral skin foams for maximal flexural properties. Polymer<br>Engineering and Science, 1994, 34, 726-733.                                                                                              | 1.5 | 15        |
| 71 | Flexural Properties of Mica Filled Polyurethane Foams. Journal of Cellular Plastics, 1997, 33, 587-605.                                                                                                                                   | 1.2 | 15        |
| 72 | Steady flow of smooth, inelastic particles on a bumpy inclined plane: Hard and soft particle simulations. Physical Review E, 2010, 81, 041307.                                                                                            | 0.8 | 15        |

| #  | Article                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Modeling the dynamics of reactive foaming and film thinning in polyurethane foams. AICHE Journal, 2010, 56, 522-530.                                                                                                           | 1.8 | 14        |
| 74 | Sensitivity of granular segregation of mixtures in quasi-two-dimensional fluidized layers. Physical Review E, 2004, 69, 031304.                                                                                                | 0.8 | 13        |
| 75 | Rheology of dense granular flows in two dimensions: Comparison of fully two-dimensional flows to<br>unidirectional shear flow. Physical Review Fluids, 2018, 3, .                                                              | 1.0 | 13        |
| 76 | Diffusionâ€limited polymerization of rigid rodlike molecules: Semidilute solutions. Journal of Chemical Physics, 1993, 99, 1382-1392.                                                                                          | 1.2 | 12        |
| 77 | Hydraulic resistance of rigid polyurethane foams. III. Effect of variation of the concentration of catalysts on foam structure and properties. Journal of Applied Polymer Science, 2004, 93, 2838-2843.                        | 1.3 | 12        |
| 78 | Hydraulic resistance of rigid polyurethane foams. I. Effect of different surfactants on foam structure and properties. Journal of Applied Polymer Science, 2004, 93, 2821-2829.                                                | 1.3 | 12        |
| 79 | Clay nanoplatelet induced morphological evolutions during polymeric foaming. Soft Matter, 2011, 7, 6801.                                                                                                                       | 1.2 | 12        |
| 80 | Structure–thermomechanical property correlation of moisture cured poly(urethane-urea)/clay nanocomposite coatings. Progress in Organic Coatings, 2012, 75, 264-273.                                                            | 1.9 | 12        |
| 81 | Effects of Ethanol Addition on the Size Distribution of Liposome Suspensions in Water. Industrial<br>& Engineering Chemistry Research, 2019, 58, 7511-7519.                                                                    | 1.8 | 12        |
| 82 | Collisional SPH: A method to model frictional collisions with SPH. Applied Mathematical Modelling, 2021, 94, 13-35.                                                                                                            | 2.2 | 12        |
| 83 | Simulation of diffusionâ€limited stepâ€growth polymerization in 2D: Effect of shear flow and chain<br>rigidity. Journal of Chemical Physics, 1993, 99, 3067-3074.                                                              | 1.2 | 11        |
| 84 | Role of voids in granular convection. Physical Review E, 1997, 55, 6121-6133.                                                                                                                                                  | 0.8 | 11        |
| 85 | Polymerization kinetics of rodlike molecules under quiescent conditions. AICHE Journal, 2001, 47, 177-186.                                                                                                                     | 1.8 | 11        |
| 86 | Open problems in active chaotic flows: Competition between chaos and order in granular materials.<br>Chaos, 2002, 12, 400-407.                                                                                                 | 1.0 | 11        |
| 87 | Creating analytically divergence-free velocity fields from grid-based data. Journal of Computational<br>Physics, 2016, 323, 75-94.                                                                                             | 1.9 | 11        |
| 88 | A study of the rheology and micro-structure of dumbbells in shear geometries. Physics of Fluids, 2018, 30, .                                                                                                                   | 1.6 | 11        |
| 89 | Shear flow induced orientation development during homogeneous solution polymerization of rigid rodlike molecules. Macromolecules, 1993, 26, 3960-3965.                                                                         | 2.2 | 10        |
| 90 | Hydraulic resistance of rigid polyurethane foams. II. Effect of variation of surfactant, water, and nucleating agent concentrations on foam structure and properties. Journal of Applied Polymer Science, 2004, 93, 2830-2837. | 1.3 | 10        |

| #   | Article                                                                                                                                                                                               | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Mixing of granular material in rotating cylinders with noncircular cross-sections. Physics of Fluids, 2010, 22, 103302.                                                                               | 1.6 | 10        |
| 92  | Coalescence in a surfactant-less emulsion under simple shear flow. AICHE Journal, 2006, 52, 885-894.                                                                                                  | 1.8 | 9         |
| 93  | Granular flow in rotating cylinders with noncircular cross sections. Physical Review E, 2008, 77, 041301.                                                                                             | 0.8 | 9         |
| 94  | Collision rates in chaotic flows: Dilute suspensions. Physical Review A, 1990, 42, 5964-5969.                                                                                                         | 1.0 | 8         |
| 95  | Brownian dynamics simulation of diffusion-limited polymerization of rodlike molecules: Anisotropic translation diffusion. Journal of Chemical Physics, 1998, 108, 5626-5634.                          | 1.2 | 8         |
| 96  | Anomalous toluene transport in model segmented polyurethane–urea/clay nanocomposites. Soft<br>Matter, 2018, 14, 3870-3881.                                                                            | 1.2 | 8         |
| 97  | Theoretical calculation of the buoyancy force on a particle in flowing granular mixtures. Physical Review E, 2019, 100, 042909.                                                                       | 0.8 | 8         |
| 98  | A note on the linear vector model of Olbricht, Rallison, and Leal as applied to the breakup of slender axisymmetric drops. Journal of Non-Newtonian Fluid Mechanics, 1986, 21, 127-131.               | 1.0 | 7         |
| 99  | Competition effects in surface diffusion controlled reactions: Theory and Brownian dynamics simulations. Journal of Chemical Physics, 1993, 99, 9237-9247.                                            | 1.2 | 7         |
| 100 | Simulation of the percolation of water into rigid polyurethane foams at applied hydraulic pressures.<br>Polymer Engineering and Science, 2006, 46, 970-983.                                           | 1.5 | 7         |
| 101 | Analysis of grinding in a spiral jet mill. Part 1: Batch grinding. Chemical Engineering Science, 2021, 231, 116310.                                                                                   | 1.9 | 7         |
| 102 | Elastoplastic frictional collisions with Collisional-SPH. Tribology International, 2022, 168, 107438.                                                                                                 | 3.0 | 7         |
| 103 | Jet impingement mixing in an L-type mixhead: Comparison of mixing criteria. Polymer Engineering and Science, 1993, 33, 1611-1618.                                                                     | 1.5 | 6         |
| 104 | Brownian dynamics simulations of diffusion controlled reactions with finite reactivity. Journal of Chemical Physics, 1997, 107, 1915-1921.                                                            | 1.2 | 6         |
| 105 | Gradient Monte Carlo simulations: Hard spheres in spatially varying temperature and gravitational fields. Physical Review E, 2011, 83, 061306.                                                        | 0.8 | 5         |
| 106 | Benzyl triphenyl phosphonium chloride as an additive for polyvinylidene fluoride: Melt rheology,<br>crystallization, and electrical properties. Polymer Engineering and Science, 2014, 54, 2420-2429. | 1.5 | 5         |
| 107 | A study of wet granule breakage in a breakage-only high-shear mixer. Advanced Powder Technology,<br>2020, 31, 2438-2446.                                                                              | 2.0 | 5         |
| 108 | Theory for size segregation in flowing granular mixtures based on computation of forces on a single large particle. Physical Review E, 2021, 103, L031301.                                            | 0.8 | 5         |

| #   | Article                                                                                                                                                                                               | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | FLUIDIZED BED ADSORBER MODELLING AND EXPERIMENTAL STUDY. Chemical Engineering Communications, 1983, 20, 235-251.                                                                                      | 1.5 | 4         |
| 110 | Structure Formation in Suspensions with a Liquid Crystalline Medium:  Percolation Phenomena.<br>Langmuir, 1998, 14, 2541-2547.                                                                        | 1.6 | 4         |
| 111 | Acceleration of the Polymerization of Rodlike Molecules by Flow. Journal of the American Chemical Society, 2000, 122, 10910-10913.                                                                    | 6.6 | 4         |
| 112 | Flow enhanced diffusion-limited polymerization of rodlike molecules. Journal of Chemical Physics, 2001, 114, 553.                                                                                     | 1.2 | 4         |
| 113 | A Simple Method for Studying the Dynamics of Rigid Polyurethane Foam Formation. Journal of<br>Cellular Plastics, 1993, 29, 280-284.                                                                   | 1.2 | 3         |
| 114 | RAINING OF PARTICLES FROM AN EMULSION-GAS INTERFACE IN A FLUIDIZED BED. Chemical Engineering Communications, 1997, 161, 205-229.                                                                      | 1.5 | 3         |
| 115 | Reinforcement Mechanism Of Polyurethane-Ureaâ^•Clay Nanocomposites Probed By Positron<br>Annihilation Lifetime Spectroscopy And Dynamic Mechanical Analysis. AIP Conference Proceedings,<br>2010, , . | 0.3 | 3         |
| 116 | Granular surface flow on an asymmetric conicalÂheap. Journal of Fluid Mechanics, 2019, 865, 41-59.                                                                                                    | 1.4 | 3         |
| 117 | Granular segregation in quasi-2d rectangular bin. , 2013, , .                                                                                                                                         |     | 2         |
| 118 | Experimental Investigation of Coke Collapse in Quasi-two Dimensional System for a Blast Furnace.<br>Procedia Engineering, 2015, 102, 676-683.                                                         | 1.2 | 2         |
| 119 | Global organization of three-dimensional, volume-preserving flows: Constraints, degenerate points,<br>and Lagrangian structure. Chaos, 2020, 30, 033124.                                              | 1.0 | 2         |
| 120 | Free energy of conformational change in a single chain of polyvinylidene fluoride using molecular simulations. Polymer Engineering and Science, 2021, 61, 1270-1280.                                  | 1.5 | 2         |
| 121 | Reduction in gravity-induced collision frequencies of particles dispersed in a viscoplastic fluid.<br>Journal of Colloid and Interface Science, 1992, 153, 578-580.                                   | 5.0 | 1         |
| 122 | Modeling of industrial styrene polymerization reactors. Polymer Engineering and Science, 1997, 37, 1073-1081.                                                                                         | 1.5 | 1         |
| 123 | Structural Investigations of Polyurethane-Ureaâ^•Clay Nanocomposites. AIP Conference Proceedings, 2011, , .                                                                                           | 0.3 | 1         |
| 124 | Depth Profile of Chemical Composition and Free Volume of Polyurethane-Urea/Clay Nanocomposite.<br>Materials Science Forum, 0, 733, 175-178.                                                           | 0.3 | 1         |
| 125 | Field induced gradient simulations: A high throughput method for computing chemical potentials in multicomponent systems. Journal of Chemical Physics, 2012, 136, 134108.                             | 1.2 | 1         |
| 126 | Dense Granular Flows: Rheology and Segregation. AIP Conference Proceedings, 2008, , .                                                                                                                 | 0.3 | 0         |

| #   | Article                                                                                                                                        | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Preface to the Professor K. D. P. Nigam Festschrift. Industrial & Engineering Chemistry Research, 2012, 51, 1435-1436.                         | 1.8 | 0         |
| 128 | DEM simulations of quasi-two-dimensional flow of spherical particles on a heap without sidewalls.<br>EPJ Web of Conferences, 2021, 249, 03034. | 0.1 | 0         |
| 129 | Signatures of Chaos in 2D Tumbling Mixers. Solid Mechanics and Its Applications, 2000, , 171-180.                                              | 0.1 | 0         |