
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1042805/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of continuous positive airway pressure treatment of obstructive sleep apnea-hypopnea in multiple sclerosis: A randomized, double-blind, placebo-controlled trial (SAMS-PAP study). Multiple Sclerosis Journal, 2022, 28, 82-92.	1.4	3
2	Long-term safety and efficacy of dimethyl fumarate for up to 13 years in patients with relapsing-remitting multiple sclerosis: Final ENDORSE study results. Multiple Sclerosis Journal, 2022, 28, 801-816.	1.4	26
3	Rapid and sustained B-cell depletion with subcutaneous ofatumumab in relapsing multiple sclerosis: APLIOS, a randomized phase-2 study. Multiple Sclerosis Journal, 2022, 28, 910-924.	1.4	27
4	Metagenomic Analysis of the Pediatric-Onset Multiple Sclerosis Gut Microbiome. Neurology, 2022, 98, .	1.5	15
5	Accumulation of meningeal lymphocytes correlates with white matter lesion activity in progressive multiple sclerosis. JCI Insight, 2022, 7, .	2.3	16
6	The health-related quality of life of children with multiple sclerosis is mediated by the health-related quality of life of their parents. Multiple Sclerosis Journal, 2022, 28, 1299-1310.	1.4	4
7	Vaccine Response in Patients With Multiple Sclerosis Receiving Teriflunomide. Frontiers in Neurology, 2022, 13, 828616.	1.1	4
8	Stability of the gut microbiota in persons with paediatric-onset multiple sclerosis and related demyelinating diseases. Multiple Sclerosis Journal, 2022, 28, 1819-1824.	1.4	2
9	BTK inhibition limits B-cell–T-cell interaction through modulation of B-cell metabolism: implications for multiple sclerosis therapy. Acta Neuropathologica, 2022, 143, 505-521.	3.9	29
10	Pathways to cures for multiple sclerosis: A research roadmap. Multiple Sclerosis Journal, 2022, 28, 331-345.	1.4	9
11	Efficacy and safety of ofatumumab in recently diagnosed, treatment-naive patients with multiple sclerosis: Results from ASCLEPIOS I and II. Multiple Sclerosis Journal, 2022, 28, 1562-1575.	1.4	25
12	Effect of siponimod on magnetic resonance imaging measures of neurodegeneration and myelination in secondary progressive multiple sclerosis: Gray matter atrophy and magnetization transfer ratio analyses from the EXPAND phase 3 trial. Multiple Sclerosis Journal, 2022, 28, 1526-1540.	1.4	16
13	Long-term efficacy and safety of siponimod in patients with secondary progressive multiple sclerosis: Analysis of EXPAND core and extension data up to >5 years. Multiple Sclerosis Journal, 2022, 28, 1591-1605.	1.4	19
14	Progressive retinal changes in pediatric multiple sclerosis. Multiple Sclerosis and Related Disorders, 2022, 61, 103761.	0.9	2
15	Abnormal B-Cell and Tfh-Cell Profiles in Patients With Parkinson Disease. Neurology: Neuroimmunology and NeuroInflammation, 2022, 9, .	3.1	21
16	Guilty by association: Epstein–Barr virus in multiple sclerosis. Nature Medicine, 2022, 28, 904-906.	15.2	15
17	The metabolic potential of the paediatric-onset multiple sclerosis gut microbiome. Multiple Sclerosis and Related Disorders, 2022, 63, 103829.	0.9	8
18	Serum MOG-IgG in children meeting multiple sclerosis diagnostic criteria. Multiple Sclerosis Journal, 2022, 28, 1697-1709.	1.4	12

#	Article	IF	CITATIONS
19	033†Ocrelizumab: serum Ig levels and serious infections. Journal of Neurology, Neurosurgery and Psychiatry, 2022, 93, A23.3-A24.	0.9	0
20	043†Efficacy of siponimod in secondary progressive multiple sclerosis with active disease: EXPAND study subgroup analysis. Journal of Neurology, Neurosurgery and Psychiatry, 2022, 93, A27.1-A27.	0.9	0
21	Siponimod vs placebo in active secondary progressive multiple sclerosis: a post hoc analysis from the phase 3 EXPAND study. Journal of Neurology, 2022, 269, 5093-5104.	1.8	7
22	045†Effect of siponimod on cortical grey matter and thalamic volume in secondary progressive multiple sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2022, 93, A27.3-A27.	0.9	0
23	116†Serum immunoglobulin levels and infection risk in Phase 3 ofatumumab trials in relapsing multiple sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2022, 93, A137.2-A137.	0.9	0
24	113†Benefit-risk of ofatumumab in treatment-naÃ⁻ve early relapsing multiple sclerosis patients. Journal of Neurology, Neurosurgery and Psychiatry, 2022, 93, A136.2-A136.	0.9	1
25	010†Safety and efficacy of long-term dimethyl fumarate treatment. Journal of Neurology, Neurosurgery and Psychiatry, 2022, 93, A16.4-A17.	0.9	0
26	Emerging therapies to target CNS pathophysiology in multiple sclerosis. Nature Reviews Neurology, 2022, 18, 466-475.	4.9	25
27	Ocrelizumab reduces thalamic volume loss in patients with RMS and PPMS. Multiple Sclerosis Journal, 2022, 28, 1927-1936.	1.4	10
28	Multiple sclerosis in the era of COVID-19: disease course, DMTs and SARS-CoV2 vaccinations. Current Opinion in Neurology, 2022, 35, 319-327.	1.8	12
29	Long-term safety and efficacy of ozanimod in relapsing multiple sclerosis: Up to 5 years of follow-up in the DAYBREAK open-label extension trial. Multiple Sclerosis Journal, 2022, 28, 1944-1962.	1.4	16
30	Siponimod: Disentangling disability and relapses in secondary progressive multiple sclerosis. Multiple Sclerosis Journal, 2021, 27, 1564-1576.	1.4	16
31	Rituximab in patients with pediatric multiple sclerosis and other demyelinating disorders of the CNS: Practical considerations. Multiple Sclerosis Journal, 2021, 27, 1814-1822.	1.4	19
32	Temporal profile of lymphocyte counts and relationship with infections with fingolimod therapy in paediatric patients with multiple sclerosis: Results from the PARADIGMS study. Multiple Sclerosis Journal, 2021, 27, 922-932.	1.4	5
33	Role of B Cells in Multiple Sclerosis and Related Disorders. Annals of Neurology, 2021, 89, 13-23.	2.8	123
34	Silent New Brain MRI Lesions in Children with MOGâ€Antibody Associated Disease. Annals of Neurology, 2021, 89, 408-413.	2.8	33
35	Efficacy and Safety of 2 Fingolimod Doses vs Glatiramer Acetate for the Treatment of Patients With Relapsing-Remitting Multiple Sclerosis. JAMA Neurology, 2021, 78, 48.	4.5	11
36	Pro-inflammatory adiponectin in pediatric-onset multiple sclerosis. Multiple Sclerosis Journal, 2021, 27, 1948-1959.	1.4	9

#	Article	IF	CITATIONS
37	Author Response: Effect of Ocrelizumab on Vaccine Responses in Patients With Multiple Sclerosis: The VELOCE Study. Neurology, 2021, 96, 870-870.	1.5	2
38	Examining cognitive speed and accuracy dysfunction in youth and young adults with pediatric-onset multiple sclerosis using a computerized neurocognitive battery Neuropsychology, 2021, 35, 388-398.	1.0	5
39	Cellular immunology of relapsing multiple sclerosis: interactions, checks, and balances. Lancet Neurology, The, 2021, 20, 470-483.	4.9	96
40	Ozanimod in relapsing multiple sclerosis: Pooled safety results from the clinical development program. Multiple Sclerosis and Related Disorders, 2021, 51, 102844.	0.9	19
41	Meningeal B Cell Clusters Correlate with Submeningeal Pathology in a Natural Model of Multiple Sclerosis. Journal of Immunology, 2021, 207, 44-54.	0.4	8
42	B cells in multiple sclerosis — from targeted depletion to immune reconstitution therapies. Nature Reviews Neurology, 2021, 17, 399-414.	4.9	110
43	Vaccination and multiple sclerosis in the era of the COVID-19 pandemic. Journal of Neurology, Neurosurgery and Psychiatry, 2021, 92, 1033-1043.	0.9	26
44	CCR6 Expression on B Cells Is Not Required for Clinical or Pathological Presentation of MOG Protein–Induced Experimental Autoimmune Encephalomyelitis despite an Altered Germinal Center Response. Journal of Immunology, 2021, 207, 1513-1521.	0.4	1
45	Clinical Perspectives on the Molecular and Pharmacological Attributes of Anti-CD20 Therapies for Multiple Sclerosis. CNS Drugs, 2021, 35, 985-997.	2.7	26
46	Cellular and humoral immune responses following SARS-CoV-2 mRNA vaccination in patients with multiple sclerosis on anti-CD20 therapy. Nature Medicine, 2021, 27, 1990-2001.	15.2	396
47	Safety and efficacy of tolebrutinib, an oral brain-penetrant BTK inhibitor, in relapsing multiple sclerosis: a phase 2b, randomised, double-blind, placebo-controlled trial. Lancet Neurology, The, 2021, 20, 729-738.	4.9	89
48	Manifestations and impact of the COVIDâ€19 pandemic in neuroinflammatory diseases. Annals of Clinical and Translational Neurology, 2021, 8, 918-928.	1.7	21
49	Siponimod and Cognition in Secondary Progressive Multiple Sclerosis. Neurology, 2021, 96, e376-e386.	1.5	64
50	Comparison of Spinal Cord Magnetic Resonance Imaging Features Among Children With Acquired Demyelinating Syndromes. JAMA Network Open, 2021, 4, e2128871.	2.8	27
51	Multiple sclerosis meets systems immunology – Authors' reply. Lancet Neurology, The, 2021, 20, 888.	4.9	0
52	Disrupted cognitive development following pediatric acquired demyelinating syndromes: a longitudinal study. Child Neuropsychology, 2021, , 1-22.	0.8	0
53	The gut microbiota in pediatric multiple sclerosis and demyelinating syndromes. Annals of Clinical and Translational Neurology, 2021, 8, 2252-2269.	1.7	34
54	Serial Anti–Myelin Oligodendrocyte Glycoprotein Antibody Analyses and Outcomes in Children With Demyelinating Syndromes. JAMA Neurology, 2020, 77, 82.	4.5	213

#	Article	IF	CITATIONS
55	Factors associated with health care utilization in pediatric multiple sclerosis. Multiple Sclerosis and Related Disorders, 2020, 38, 101511.	0.9	7
56	Epstein–Barr Virus in Multiple Sclerosis: Theory and Emerging Immunotherapies. Trends in Molecular Medicine, 2020, 26, 296-310.	3.5	178
57	Immune reconstitution therapies: concepts for durable remission in multiple sclerosis. Nature Reviews Neurology, 2020, 16, 56-62.	4.9	71
58	Deep learning segmentation of orbital fat to calibrate conventional MRI for longitudinal studies. NeuroImage, 2020, 208, 116442.	2.1	17
59	Five years of ocrelizumab in relapsing multiple sclerosis. Neurology, 2020, 95, e1854-e1867.	1.5	81
60	Oligodendrocyte myelin glycoprotein as a novel target for pathogenic autoimmunity in the CNS. Acta Neuropathologica Communications, 2020, 8, 207.	2.4	11
61	Effect of ocrelizumab on vaccine responses in patients with multiple sclerosis. Neurology, 2020, 95, e1999-e2008.	1.5	269
62	Ofatumumab versus Teriflunomide in Multiple Sclerosis. New England Journal of Medicine, 2020, 383, 546-557.	13.9	358
63	Multiplexed detection and isolation of viable low-frequency cytokine-secreting human B cells using cytokine secretion assay and flow cytometry (CSA-Flow). Scientific Reports, 2020, 10, 14823.	1.6	5
64	Unraveling B lymphocytes in CNS inflammatory diseases. Neurology, 2020, 95, 733-744.	1.5	10
65	The Identity of Human Tissue-Emigrant CD8+ T Cells. Cell, 2020, 183, 1946-1961.e15.	13.5	58
66	COVID-19 and MS disease-modifying therapies. Neurology: Neuroimmunology and NeuroInflammation, 2020, 7, .	3.1	91
67	Safety and efficacy of delayed-release dimethyl fumarate in patients with relapsing-remitting multiple sclerosis: 9 years' follow-up of DEFINE, CONFIRM, and ENDORSE. Therapeutic Advances in Neurological Disorders, 2020, 13, 175628642091500.	1.5	47
68	Neurological immunotherapy in the era of COVID-19 — looking for consensus in the literature. Nature Reviews Neurology, 2020, 16, 493-505.	4.9	57
69	Pre-treatment T-cell subsets associate with fingolimod treatment responsiveness in multiple sclerosis. Scientific Reports, 2020, 10, 356.	1.6	24
70	Advances in oral immunomodulating therapies in relapsing multiple sclerosis. Lancet Neurology, The, 2020, 19, 336-347.	4.9	90
71	Effect of fingolimod on MRI outcomes in patients with paediatric-onset multiple sclerosis: results from the phase 3 PARADIG <i>MS</i> study. Journal of Neurology, Neurosurgery and Psychiatry, 2020, 91, 483-492.	0.9	26
72	Neurotoxicity after hematopoietic stem cell transplant in multiple sclerosis. Annals of Clinical and Translational Neurology, 2020, 7, 767-775.	1.7	20

#	Article	lF	CITATIONS
73	Lymphocyte reconstitution after DMF discontinuation in clinical trial and real-world patients with MS. Neurology: Clinical Practice, 2020, 10, 510-519.	0.8	17
74	Editorial: Update on Translational Neuroimmunology - Research of ISNI 2018. Frontiers in Immunology, 2020, 11, 2012.	2.2	1
75	Detection and clinical correlation of leukocortical lesions in pediatric-onset multiple sclerosis on multi-contrast MRI. Multiple Sclerosis Journal, 2019, 25, 980-986.	1.4	11
76	Efficacy and safety of ozanimod in multiple sclerosis: Dose-blinded extension of a randomized phase II study. Multiple Sclerosis Journal, 2019, 25, 1255-1262.	1.4	37
77	A framework for measurement and harmonization of pediatric multiple sclerosis etiologic research studies: The Pediatric MS Tool-Kit. Multiple Sclerosis Journal, 2019, 25, 1170-1177.	1.4	3
78	Activated leukocyte cell adhesion molecule regulates B lymphocyte migration across central nervous system barriers. Science Translational Medicine, 2019, 11, .	5.8	45
79	Safety and efficacy of ozanimod versus interferon beta-1a in relapsing multiple sclerosis (SUNBEAM): a multicentre, randomised, minimum 12-month, phase 3 trial. Lancet Neurology, The, 2019, 18, 1009-1020.	4.9	191
80	Onset of clinical and MRI efficacy of ocrelizumab in relapsing multiple sclerosis. Neurology, 2019, 93, e1778-e1786.	1.5	37
81	Early neuroaxonal injury is seen in the acute phase of pediatric optic neuritis. Multiple Sclerosis and Related Disorders, 2019, 36, 101387.	0.9	4
82	Safety and efficacy of ozanimod versus interferon beta-1a in relapsing multiple sclerosis (RADIANCE): a multicentre, randomised, 24-month, phase 3 trial. Lancet Neurology, The, 2019, 18, 1021-1033.	4.9	184
83	High rates of health care utilization in pediatric multiple sclerosis: A Canadian population-based study. PLoS ONE, 2019, 14, e0218215.	1.1	15
84	Exosome-enriched fractions from MS B cells induce oligodendrocyte death. Neurology: Neuroimmunology and NeuroInflammation, 2019, 6, e550.	3.1	26
85	Teriflunomide treatment for multiple sclerosis modulates T cell mitochondrial respiration with affinity-dependent effects. Science Translational Medicine, 2019, 11, .	5.8	92
86	Effect of dimethyl fumarate on lymphocytes in RRMS. Neurology, 2019, 92, e1724-e1738.	1.5	66
87	A surfaceâ€in gradient of thalamic damage evolves in pediatric multiple sclerosis. Annals of Neurology, 2019, 85, 340-351.	2.8	42
88	Abnormal effector and regulatory T cell subsets in paediatric-onset multiple sclerosis. Brain, 2019, 142, 617-632.	3.7	72
89	Pediatric-onset multiple sclerosis is associated with reduced parental health–related quality of life and family functioning. Multiple Sclerosis Journal, 2019, 25, 1661-1672.	1.4	21
90	Recirculating Intestinal IgA-Producing Cells Regulate Neuroinflammation via IL-10. Cell, 2019, 176, 610-624.e18.	13.5	241

#	Article	IF	CITATIONS
91	The FLUENT study design: investigating immune cell subset and neurofilament changes in patients with relapsing multiple sclerosis treated with fingolimod. Multiple Sclerosis Journal - Experimental, Translational and Clinical, 2019, 5, 205521731881924.	0.5	3
92	The contribution of secondhand tobacco smoke exposure to pediatric multiple sclerosis risk. Multiple Sclerosis Journal, 2019, 25, 515-522.	1.4	32
93	The Multiple Roles of B Cells in Multiple Sclerosis and Their Implications in Multiple Sclerosis Therapies. Cold Spring Harbor Perspectives in Medicine, 2019, 9, a029108.	2.9	17
94	T follicular helper cells in human efferent lymph retain lymphoid characteristics. Journal of Clinical Investigation, 2019, 129, 3185-3200.	3.9	116
95	MRI and laboratory features and the performance of international criteria in the diagnosis of multiple sclerosis in children and adolescents: a prospective cohort study. The Lancet Child and Adolescent Health, 2018, 2, 191-204.	2.7	86
96	Subcutaneous ofatumumab in patients with relapsing-remitting multiple sclerosis. Neurology, 2018, 90, e1805-e1814.	1.5	165
97	No evidence of disease activity (NEDA) analysis by epochs in patients with relapsing multiple sclerosis treated with ocrelizumab vs interferon beta-1a. Multiple Sclerosis Journal - Experimental, Translational and Clinical, 2018, 4, 205521731876064.	0.5	32
98	Siponimod versus placebo in secondary progressive multiple sclerosis (EXPAND): a double-blind, randomised, phase 3 study. Lancet, The, 2018, 391, 1263-1273.	6.3	684
99	Differential transcriptional response profiles in human myeloid cell populations. Clinical Immunology, 2018, 189, 63-74.	1.4	15
100	Treatment response to dimethyl fumarate is characterized by disproportionate CD8+ T cell reduction in MS. Multiple Sclerosis Journal, 2018, 24, 632-641.	1.4	57
101	Pilot trial of intravenous autologous culture-expanded mesenchymal stem cell transplantation in multiple sclerosis. Multiple Sclerosis Journal, 2018, 24, 501-511.	1.4	86
102	Multiple sclerosis. Nature Reviews Disease Primers, 2018, 4, 43.	18.1	767
103	Physical activity and dentate gyrus volume in pediatric acquired demyelinating syndromes. Neurology: Neuroimmunology and NeuroInflammation, 2018, 5, e499.	3.1	4
104	Trial of Fingolimod versus Interferon Beta-1a in Pediatric Multiple Sclerosis. New England Journal of Medicine, 2018, 379, 1017-1027.	13.9	237
105	Natural Killer Cells Regulate Th17 Cells After Autologous Hematopoietic Stem Cell Transplantation for Relapsing Remitting Multiple Sclerosis. Frontiers in Immunology, 2018, 9, 834.	2.2	51
106	Isotype-Switched Autoantibodies Are Necessary To Facilitate Central Nervous System Autoimmune Disease in Aicdaâ^'/â^' and Ungâ^'/â^' Mice. Journal of Immunology, 2018, 201, 1119-1130.	0.4	15
107	Human central nervous system astrocytes support survival and activation of B cells: implications for MS pathogenesis. Journal of Neuroinflammation, 2018, 15, 114.	3.1	40
108	Neuroimmune disorders of the central nervous system in children in the molecular era. Nature Reviews Neurology, 2018, 14, 433-445.	4.9	41

#	Article	IF	CITATIONS
109	Reassessing B cell contributions in multiple sclerosis. Nature Immunology, 2018, 19, 696-707.	7.0	275
110	Antibody-Independent Function of Human B Cells Contributes to Antifungal T Cell Responses. Journal of Immunology, 2017, 198, 3245-3254.	0.4	31
111	B cells from patients with multiple sclerosis induce cell death via apoptosis in neurons in vitro. Journal of Neuroimmunology, 2017, 309, 88-99.	1.1	85
112	White matter changes in paediatric multiple sclerosis and monophasic demyelinating disorders. Brain, 2017, 140, 1300-1315.	3.7	52
113	Dimethyl fumarate–induced lymphopenia in MS due to differential T-cell subset apoptosis. Neurology: Neuroimmunology and NeuroInflammation, 2017, 4, e340.	3.1	73
114	Monophasic demyelination reduces brain growth in children. Neurology, 2017, 88, 1744-1750.	1.5	43
115	Ocrelizumab versus Interferon Beta-1a in Relapsing Multiple Sclerosis. New England Journal of Medicine, 2017, 376, 221-234.	13.9	1,322
116	Ocrelizumab versus Placebo in Primary Progressive Multiple Sclerosis. New England Journal of Medicine, 2017, 376, 209-220.	13.9	1,324
117	Dimethyl Fumarate Treatment Mediates an Anti-Inflammatory Shift in B Cell Subsets of Patients with Multiple Sclerosis. Journal of Immunology, 2017, 198, 691-698.	0.4	112
118	Reconstitution of the peripheral immune repertoire following withdrawal of fingolimod. Multiple Sclerosis Journal, 2017, 23, 1225-1232.	1.4	32
119	Role of IL-17-producing lymphocytes in severity of multiple sclerosis upon natalizumab treatment. Multiple Sclerosis Journal, 2017, 23, 567-576.	1.4	15
120	MerTK-mediated regulation of myelin phagocytosis by macrophages generated from patients with MS. Neurology: Neuroimmunology and NeuroInflammation, 2017, 4, e402.	3.1	49
121	Glioblastoma-infiltrated innate immune cells resemble M0 macrophage phenotype. JCI Insight, 2016, 1, .	2.3	356
122	Central nervous system inflammation across the age span. Current Opinion in Neurology, 2016, 29, 381-387.	1.8	9
123	Restoring immune tolerance in neuromyelitis optica. Neurology: Neuroimmunology and NeuroInflammation, 2016, 3, e277.	3.1	39
124	Restoring immune tolerance in neuromyelitis optica. Neurology: Neuroimmunology and NeuroInflammation, 2016, 3, e276.	3.1	35
125	Immunopathophysiology of pediatric CNS inflammatory demyelinating diseases. Neurology, 2016, 87, S12-9.	1.5	49
126	Human Mesenchymal Stem Cells Impact Th17 and Th1 Responses Through a Prostaglandin E2 and Myeloid-Dependent Mechanism. Stem Cells Translational Medicine, 2016, 5, 1506-1514.	1.6	73

#	Article	IF	CITATIONS
127	Cytokineâ€producing B cells: aÂtranslational view on their roles in human and mouse autoimmune diseases. Immunological Reviews, 2016, 269, 130-144.	2.8	50
128	Immunoablation and autologous haemopoietic stem-cell transplantation for aggressive multiple sclerosis: a multicentre single-group phase 2 trial. Lancet, The, 2016, 388, 576-585.	6.3	296
129	MerTK Is a Functional Regulator of Myelin Phagocytosis by Human Myeloid Cells. Journal of Immunology, 2016, 196, 3375-3384.	0.4	128
130	Safety and efficacy of the selective sphingosine 1-phosphate receptor modulator ozanimod in relapsing multiple sclerosis (RADIANCE): a randomised, placebo-controlled, phase 2 trial. Lancet Neurology, The, 2016, 15, 373-381.	4.9	150
131	Efficacy of delayedâ€release dimethyl fumarate in relapsingâ€remitting multiple sclerosis: integrated analysis of the phase 3 trials. Annals of Clinical and Translational Neurology, 2015, 2, 103-118.	1.7	48
132	Sequencing the immunopathologic heterogeneity in multiple sclerosis. Annals of Clinical and Translational Neurology, 2015, 2, 873-874.	1.7	1
133	B Cells in the Multiple Sclerosis Central Nervous System: Trafficking and Contribution to CNS-Compartmentalized Inflammation. Frontiers in Immunology, 2015, 6, 636.	2.2	120
134	TLR2 Stimulation Regulates the Balance between Regulatory T Cell and Th17 Function: A Novel Mechanism of Reduced Regulatory T Cell Function in Multiple Sclerosis. Journal of Immunology, 2015, 194, 5761-5774.	0.4	65
135	P2Y12 expression and function in alternatively activated human microglia. Neurology: Neuroimmunology and NeuroInflammation, 2015, 2, e80.	3.1	139
136	Delayed-Release Dimethyl Fumarate and Pregnancy: Preclinical Studies and Pregnancy Outcomes from Clinical Trials and Postmarketing Experience. Neurology and Therapy, 2015, 4, 93-104.	1.4	80
137	Integration of Th17- and Lymphotoxin-Derived Signals Initiates Meningeal-Resident Stromal Cell Remodeling to Propagate Neuroinflammation. Immunity, 2015, 43, 1160-1173.	6.6	176
138	Recovery From Central Nervous System Acute Demyelination in Children. Pediatrics, 2015, 136, e115-e123.	1.0	40
139	Roles of microglia in brain development, tissue maintenance and repair. Brain, 2015, 138, 1138-1159.	3.7	316
140	Puberty in females enhances the risk of an outcome of multiple sclerosis in children and the development of central nervous system autoimmunity in mice. Multiple Sclerosis Journal, 2015, 21, 735-748.	1.4	47
141	Coexpression of TIGIT and FCRL3 Identifies Helios+ Human Memory Regulatory T Cells. Journal of Immunology, 2015, 194, 3687-3696.	0.4	115
142	Proinflammatory GM-CSF–producing B cells in multiple sclerosis and B cell depletion therapy. Science Translational Medicine, 2015, 7, 310ra166.	5.8	334
143	B lymphocytes in neuromyelitis optica. Neurology: Neuroimmunology and NeuroInflammation, 2015, 2, e104.	3.1	132
144	Neuroinflammation: Ways in Which the Immune System Affects the Brain. Neurotherapeutics, 2015, 12, 896-909.	2.1	170

#	Article	IF	CITATIONS
145	Update on biomarkers in neuromyelitis optica. Neurology: Neuroimmunology and NeuroInflammation, 2015, 2, e134.	3.1	104
146	Direct and Indirect Effects of Immune and Central Nervous System–Resident Cells on Human Oligodendrocyte Progenitor Cell Differentiation. Journal of Immunology, 2015, 194, 761-772.	0.4	75
147	Cytokine-Defined B Cell Responses as Therapeutic Targets in Multiple Sclerosis. Frontiers in Immunology, 2015, 6, 626.	2.2	69
148	Meningeal Tertiary Lymphoid Tissues and Multiple Sclerosis: A Gathering Place for Diverse Types of Immune Cells during CNS Autoimmunity. Frontiers in Immunology, 2015, 6, 657.	2.2	73
149	Effects of Blood Transportation on Human Peripheral Mononuclear Cell Yield, Phenotype and Function: Implications for Immune Cell Biobanking. PLoS ONE, 2014, 9, e115920.	1.1	43
150	Epitope spreading as an early pathogenic event in pediatric multiple sclerosis. Neurology, 2014, 83, 2219-2226.	1.5	58
151	Teriflunomide and Its Mechanism of Action in Multiple Sclerosis. Drugs, 2014, 74, 659-674.	4.9	274
152	IL-35-producing B cells are critical regulators of immunity during autoimmune and infectious diseases. Nature, 2014, 507, 366-370.	13.7	882
153	Rasmussen encephalitis and comorbid autoimmune diseases. Neurology, 2014, 83, 1049-1055.	1.5	22
154	Changes in Th17 and regulatory T cells after fingolimod initiation to treat multiple sclerosis. Journal of Neuroimmunology, 2014, 268, 95-98.	1.1	50
155	Teriflunomide (Aubagio®) for the treatment of multiple sclerosis. Experimental Neurology, 2014, 262, 57-65.	2.0	36
156	A Novel MicroRNA-132-Surtuin-1 Axis Underlies Aberrant B-cell Cytokine Regulation in Patients with Relapsing-Remitting Multiple Sclerosis. PLoS ONE, 2014, 9, e105421.	1.1	81
157	miRâ€155 as a multiple sclerosis–relevant regulator of myeloid cell polarization. Annals of Neurology, 2013, 74, 709-720.	2.8	189
158	Clinical efficacy of BG-12 (dimethyl fumarate) in patients with relapsing–remitting multiple sclerosis: subgroup analyses of the DEFINE study. Journal of Neurology, 2013, 260, 2297-2305.	1.8	62
159	B cell depletion therapy ameliorates autoimmune disease through ablation of IL-6–producing B cells. Journal of Experimental Medicine, 2012, 209, 1001-1010.	4.2	530
160	<scp>B</scp> cells set trends: Lessons from multiple sclerosis. Clinical and Experimental Neuroimmunology, 2012, 3, 89-108.	0.5	1
161	Laquinimod in multiple sclerosis. Clinical Immunology, 2012, 142, 38-43.	1.4	16
162	Treatment of multiple sclerosis with Anti-CD20 antibodies. Clinical Immunology, 2012, 142, 31-37.	1.4	118

#	Article	IF	CITATIONS
163	From bench to MS bedside: Challenges translating biomarker discovery to clinical practice. Journal of Neuroimmunology, 2012, 248, 66-72.	1.1	9
164	Secretory products of multiple sclerosis B cells are cytotoxic to oligodendroglia in vitro. Journal of Neuroimmunology, 2012, 246, 85-95.	1.1	145
165	Autoantibodies against aquaporin-4 and myelin oligodendrocyte glycoprotein in paediatric CNS demyelination: Recent developments and future directions. Multiple Sclerosis and Related Disorders, 2012, 1, 116-122.	0.9	3
166	Targeting Progressive Neuroaxonal Injury. CNS Drugs, 2011, 25, 783-799.	2.7	25
167	Transient increases in anti-aquaporin-4 antibody titers following rituximab treatment in neuromyelitis optica, in association with elevated serum BAFF levels. Journal of Clinical Neuroscience, 2011, 18, 997-998.	0.8	77
168	Ocrelizumab in relapsing-remitting multiple sclerosis: a phase 2, randomised, placebo-controlled, multicentre trial. Lancet, The, 2011, 378, 1779-1787.	6.3	636
169	The immunology of multiple sclerosis. , 2011, , 20-34.		6
170	Clinical, environmental, and genetic determinants of multiple sclerosis in children with acute demyelination: a prospective national cohort study. Lancet Neurology, The, 2011, 10, 436-445.	4.9	267
171	Therapies for multiple sclerosis: considerations in the pediatric patient. Nature Reviews Neurology, 2011, 7, 109-122.	4.9	43
172	A proteome map of axoglial specializations isolated and purified from human central nervous system. Glia, 2010, 58, 1949-1960.	2.5	46
173	Abnormal Bâ€cell cytokine responses a trigger of Tâ€cell–mediated disease in MS?. Annals of Neurology, 2010, 67, 452-461.	2.8	428
174	EBV and brain matter(s)?. Neurology, 2010, 74, 1092-1095.	1.5	18
175	Evidence of in vivo Immune Modulation with Vitamin D3 and Calcium Supplementation in Multiple Sclerosis. FASEB Journal, 2010, 24, 537.23.	0.2	0
176	Age-Dependent B Cell Autoimmunity to a Myelin Surface Antigen in Pediatric Multiple Sclerosis. Journal of Immunology, 2009, 183, 4067-4076.	0.4	182
177	Antigen-specific therapies in multiple sclerosis. Expert Opinion on Emerging Drugs, 2009, 14, 551-560.	1.0	8
178	Myelin regulates immune cell adhesion and motility. Experimental Neurology, 2009, 217, 371-377.	2.0	30
179	Emerging multiple sclerosis disease-modifying therapies. Current Opinion in Neurology, 2009, 22, 226-232.	1.8	21
180	Abnormal Tâ€cell reactivities in childhood inflammatory demyelinating disease and type 1 diabetes. Annals of Neurology, 2008, 63, 98-111.	2.8	77

#	Article	IF	CITATIONS
181	Rituximab in relapsingâ€remitting multiple sclerosis: A 72â€week, openâ€label, phase I trial. Annals of Neurology, 2008, 63, 395-400.	2.8	484
182	B-cell-derived interleukin-10 in autoimmune disease: regulating the regulators. Nature Reviews Immunology, 2008, 8, 486-487.	10.6	45
183	Elevated serum inflammatory markers in post-poliomyelitis syndrome. Journal of the Neurological Sciences, 2008, 271, 80-86.	0.3	34
184	B-Cell Depletion with Rituximab in Relapsing–Remitting Multiple Sclerosis. New England Journal of Medicine, 2008, 358, 676-688.	13.9	2,107
185	Functional Consequences of Neuromyelitis Optica-IgG Astrocyte Interactions on Blood-Brain Barrier Permeability and Granulocyte Recruitment. Journal of Immunology, 2008, 181, 5730-5737.	0.4	233
186	The Immunology of Multiple Sclerosis. Seminars in Neurology, 2008, 28, 029-045.	0.5	117
187	Beta interferons in clinically isolated syndromes: a meta-analysis. Arquivos De Neuro-Psiquiatria, 2008, 66, 8-10.	0.3	5
188	Distinct Effector Cytokine Profiles of Memory and Naive Human B Cell Subsets and Implication in Multiple Sclerosis. Journal of Immunology, 2007, 178, 6092-6099.	0.4	567
189	Induction of Antigen-Specific Tolerance in Multiple Sclerosis After Immunization With DNA Encoding Myelin Basic Protein in a Randomized, Placebo-Controlled Phase 1/2 Trial. Archives of Neurology, 2007, 64, 1407.	4.9	159
190	Metalloproteinases are enriched in microglia compared with leukocytes and they regulate cytokine levels in activated microglia. Glia, 2007, 55, 516-526.	2.5	87
191	Self-antigen tetramers discriminate between myelin autoantibodies to native or denatured protein. Nature Medicine, 2007, 13, 211-217.	15.2	342
192	Clinical features and viral serologies in children with multiple sclerosis: a multinational observational study. Lancet Neurology, The, 2007, 6, 773-781.	4.9	292
193	Roles of immunoglobulins and B cells in multiple sclerosis: From pathogenesis to treatment. Journal of Neuroimmunology, 2006, 180, 3-8.	1.1	80
194	Natalizumab effects on immune cell responses in multiple sclerosis. Annals of Neurology, 2006, 59, 748-754.	2.8	190
195	Altered CD4+/CD8+ T-Cell Ratios in Cerebrospinal Fluid of Natalizumab-Treated Patients With Multiple Sclerosis. Archives of Neurology, 2006, 63, 1383.	4.9	271
196	Additive effect of the combination of glatiramer acetate and minocycline in a model of MS. Journal of Neuroimmunology, 2005, 158, 213-221.	1.1	102
197	Microglia and multiple sclerosis. Journal of Neuroscience Research, 2005, 81, 363-373.	1.3	174
198	Microglial Expression of the B7 Family Member B7 Homolog 1 Confers Strong Immune Inhibition: Implications for Immune Responses and Autoimmunity in the CNS. Journal of Neuroscience, 2005, 25, 2537-2546.	1.7	150

AMIT BAR-OR

#	Article	IF	CITATIONS
199	Immunology of multiple sclerosis. Neurologic Clinics, 2005, 23, 149-175.	0.8	29
200	Distinct Profiles of Human B Cell Effector Cytokines: A Role in Immune Regulation?. Journal of Immunology, 2004, 172, 3422-3427.	0.4	316
201	Type 2 Monocyte and Microglia Differentiation Mediated by Glatiramer Acetate Therapy in Patients with Multiple Sclerosis. Journal of Immunology, 2004, 172, 7144-7153.	0.4	187
202	Inflammatory potential and migratory capacities across human brain endothelial cells of distinct glatiramer acetate-reactive T cells generated in treated multiple sclerosis patients. Clinical Immunology, 2004, 111, 38-46.	1.4	18
203	Myelin basic protein-reactive autoantibodies in the serum and cerebrospinal fluid of multiple sclerosis patients are characterized by low-affinity interactions. Journal of Neuroimmunology, 2003, 136, 140-148.	1.1	92
204	Differential effects of Th1 and Th2 lymphocyte supernatants on human microglia. Glia, 2003, 42, 36-45.	2.5	35
205	Determinants of Human B Cell Migration Across Brain Endothelial Cells. Journal of Immunology, 2003, 170, 4497-4505.	0.4	175
206	Analyses of all matrix metalloproteinase members in leukocytes emphasize monocytes as major inflammatory mediators in multiple sclerosis. Brain, 2003, 126, 2738-2749.	3.7	300
207	Do Myelin-Directed Antibodies Predict Multiple Sclerosis?. New England Journal of Medicine, 2003, 349, 107-109.	13.9	37
208	The neuroimmunology of multiple sclerosis: possible roles of T and B lymphocytes in immunopathogenesis. Journal of Clinical Immunology, 2001, 21, 81-92.	2.0	155
209	Immunological Memory: Contribution of Memory B Cells Expressing Costimulatory Molecules in the Resting State. Journal of Immunology, 2001, 167, 5669-5677.	0.4	126
210	Paradoxical inhibition of T-cell function in response to CTLA-4 blockade; heterogeneity within the human T-cell population. Nature Medicine, 2000, 6, 211-214.	15.2	69
211	Biology of Adult Human Microglia in Culture: Comparisons with Peripheral Blood Monocytes and Astrocytes. Journal of Neuropathology and Experimental Neurology, 1992, 51, 538-549.	0.9	153
212	Urinary 6-sulphatoxymelatonin, an index of pineal function in the rat. Journal of Pineal Research, 1991, 10, 141-147.	3.4	54
213	Pineal involvement in the diurnal rhythm of nociception in the rat. Life Sciences, 1989, 44, 1067-1075.	2.0	32
214	B-cell-based therapies for multiple sclerosis. $0.483-497$.		0

B-cell-based therapies for multiple sclerosis. , 0, , 483-497.