Hamed Mirzadeh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1042792/publications.pdf

Version: 2024-02-01

199 papers 7,892 citations

53 h-index 78 g-index

200 all docs

 $\begin{array}{c} 200 \\ \\ \text{docs citations} \end{array}$

times ranked

200

3112 citing authors

#	Article	IF	CITATIONS
1	Synergistic Effects of Cerium-Based Rare Earth Addition and Hot Deformation on the Microstructure and Mechanical Properties of Mg-0.5Zn-0.5Zr Magnesium Alloy. Metals and Materials International, 2022, 28, 1105-1113.	3.4	11
2	Amorphization, mechano-crystallization, and crystallization kinetics of mechanically alloyed AlFeCuZnTi high-entropy alloys. Materials Letters, 2022, 307, 131098.	2.6	19
3	Microstructure and Mechanical Properties of Dualâ€Phase Steels by Combining Adjusted Initial Microstructures and Severe Plastic Deformation. Steel Research International, 2022, 93, 2100596.	1.8	1
4	Superplasticity of high-entropy alloys: a review. Archives of Civil and Mechanical Engineering, 2022, 22, 1.	3.8	24
5	Microstructures and mechanical performance of Mg–4Si–6Ni– <i>x</i> Y <i>iin situ</i> composite after extrusion process. Materials Science and Technology, 2022, 38, 169-180.	1.6	5
6	A review of hot deformation behavior and constitutive models to predict flow stress of high-entropy alloys. Journal of Alloys and Compounds, 2022, 903, 163964.	5.5	130
7	Improvement of mechanical properties of in situ Mg-Si composites via Cu addition and hot working. Journal of Alloys and Compounds, 2022, 905, 164176.	5.5	16
8	Microstructure, mechanical properties, and pitting corrosion resistance of SAF 2205 duplex stainless steel after friction hydro-pillar processing. International Journal of Advanced Manufacturing Technology, 2022, 120, 2047-2054.	3.0	2
9	Tailoring the mechanical properties of hypereutectic in situ Al–Mg2Si composites via hybrid TiB2 reinforcement and hot extrusion. Archives of Civil and Mechanical Engineering, 2022, 22, 1.	3.8	11
10	Detailed Hall–Petch Analysis of Cold Rolled and Annealed Duplex 2205 Stainless Steel. Steel Research International, 2022, 93, .	1.8	8
11	Mechanical properties of as-cast and wrought Mg–5Ni-xAl magnesium alloys. Materials Science & Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 840, 142996.	5.6	8
12	Superplasticity of bulk metallic glasses (BMGs): A review. Journal of Non-Crystalline Solids, 2022, 583, 121503.	3.1	12
13	Additive manufacturing – A review of hot deformation behavior and constitutive modeling of flow stress. Current Opinion in Solid State and Materials Science, 2022, 26, 100992.	11.5	88
14	Cold unidirectional/cross-rolling of austenitic stainless steels: a review. Archives of Civil and Mechanical Engineering, 2022, 22, .	3.8	8
15	Tailoring the tensile properties of AZ91 magnesium alloy via grain refinement. Materials Science and Technology, 2022, 38, 1434-1438.	1.6	5
16	Effect of grain size on the mechanical properties and bio-corrosion resistance of pure magnesium. Journal of Materials Research and Technology, 2022, 19, 3100-3109.	5.8	37
17	Effect of Variation of Martensite with a Constant Carbon Content on Mechanical Behavior and Sliding Wear of Dual Phase Steels. Tribology Letters, 2022, 70, .	2.6	4
18	Enhanced mechanical properties of as-cast rare earth bearing magnesium alloy via elevated-temperature homogenization. Materials Today Communications, 2022, 31, 103821.	1.9	8

#	Article	IF	CITATIONS
19	Heterostructured stainless steel: Properties, current trends, and future perspectives. Materials Science and Engineering Reports, 2022, 150, 100691.	31.8	65
20	Thermal Mechanisms of Grain Refinement in Steels: A Review. Metals and Materials International, 2021, 27, 2078.	3.4	96
21	Finite element analysis of plastic deformation in shear punch test. Materials Letters, 2021, 284, 128953.	2.6	10
22	Effects of spheroidization heat treatment and intercritical annealing on mechanical properties and corrosion resistance of medium carbon dual phase steel. Materials Chemistry and Physics, 2021, 257, 123721.	4.0	14
23	Delta processing effects on the creep behavior of a typical Nb-bearing nickel-based superalloy. Vacuum, 2021, 184, 109913.	3.5	7
24	Enhanced mechanical properties of AZ91 magnesium alloy by inoculation and hot deformation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 802, 140667.	5.6	51
25	A dislocation assisted self-consistent constitutive model for the high-temperature deformation of particulate metal-matrix composite. Philosophical Magazine, 2021, 101, 276-305.	1.6	6
26	Effect of Gd on Dynamic Recrystallization Behavior of Magnesium During Hot Compression. Metals and Materials International, 2021, 27, 843-850.	3.4	17
27	Enhanced mechanical properties of dual phase steel via cross rolling and intercritical annealing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 804, 140778.	5 . 6	16
28	Recent advances in the kinetics of normal/abnormal grain growth: a review. Archives of Civil and Mechanical Engineering, 2021, 21, 1.	3.8	58
29	Processing, microstructure adjustments, and mechanical properties of dual phase steels: A review. Materials Science and Technology, 2021, 37, 561-591.	1.6	12
30	Enhanced tensile properties of as-cast Mg-10Al magnesium alloy via strontium addition and hot working. Archives of Civil and Mechanical Engineering, 2021, 21, 1.	3.8	12
31	Tempering kinetics and corrosion resistance of quenched and tempered AISI 4130 medium carbon steel. Materials and Corrosion - Werkstoffe Und Korrosion, 2021, 72, 1808-1812.	1.5	7
32	Effect of microalloying by Ca on the microstructure and mechanical properties of as-cast and wrought Mg–Mg2Si composites. Materials Science & Department of the Structural Materials: Properties, Microstructure and Processing, 2021, 820, 141574.	5.6	26
33	High strain rate superplasticity via friction stir processing (FSP): A review. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 819, 141499.	5. 6	77
34	Synergistic effects of alloying, homogenization, and hot extrusion on the mechanical properties of as-cast Mgâ€"Alâ€"Ca magnesium alloys. Archives of Civil and Mechanical Engineering, 2021, 21, 1.	3.8	6
35	Enhanced mechanical properties of as-cast Mg-Al-Ca magnesium alloys by friction stir processing. Materials Letters, 2021, 296, 129880.	2.6	28
36	Mechanical response of a metastable austenitic stainless steel under different deformation modes. Materials Science and Technology, 2021, 37, 103-109.	1.6	4

3

#	Article	IF	CITATIONS
37	Enhanced mechanical properties of Mg–Ni– <i>x</i> RE alloys via hot extrusion. Materials Science and Technology, 2021, 37, 1285-1290.	1.6	4
38	Effect of Zn addition on the microstructure and mechanical properties of Mg-0.5Ca-0.5RE magnesium alloy. Journal of Alloys and Compounds, 2020, 815, 152380.	5.5	49
39	Processing Route Effects on the Mechanical and Corrosion Properties of Dual Phase Steel. Metals and Materials International, 2020, 26, 882-890.	3.4	24
40	Revisiting the Diffusion of Niobium in an As-Cast Nickel-Based Superalloy During Annealing at Elevated Temperatures. Metals and Materials International, 2020, 26, 326-332.	3.4	25
41	Unraveling the Effect of Martensite Volume Fraction on the Mechanical and Corrosion Properties of Lowâ€Carbon Dualâ€Phase Steel. Steel Research International, 2020, 91, 1900327.	1.8	13
42	Estimation of homogenisation time for superalloys based on a new diffusional model. Materials Science and Technology, 2020, 36, 380-384.	1.6	7
43	Effects of tempering on the mechanical and corrosion properties of dual phase steel. Materials Today Communications, 2020, 22, 100745.	1.9	19
44	Unexpected formation of delta (î) phase in as-cast niobium-bearing superalloy at solution annealing temperatures. Materials Letters, 2020, 261, 127008.	2.6	16
45	Tailoring the mechanical properties of Mg–Zn magnesium alloy by calcium addition and hot extrusion process. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 774, 138929.	5.6	84
46	Effect of grain size on the corrosion resistance of low carbon steel. Materials Research Express, 2020, 7, 016522.	1.6	39
47	Deformation-induced martensite in austenitic stainless steels: A review. Archives of Civil and Mechanical Engineering, 2020, 20, 1.	3.8	127
48	Transformation-induced plasticity (TRIP) in advanced steels: A review. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 795, 140023.	5.6	307
49	Mechanical Behavior of As-Cast and Extruded Mg-Si-Ni-Ca Magnesium Alloys. Journal of Materials Engineering and Performance, 2020, 29, 7728-7735.	2.5	14
50	Improved properties of dual-phase steel via pre-intercritical annealing treatment and thermal cycling. Materials Science and Technology, 2020, 36, 1663-1670.	1.6	5
51	Mechanical alloying and consolidation of copperâ€ironâ€silicon carbide nanocomposites. Materialwissenschaft Und Werkstofftechnik, 2020, 51, 1700-1704.	0.9	2
52	Unraveling the Effect of Deformation Temperature on the Mechanical Behavior and Transformationâ€Induced Plasticity of the SUS304L Stainless Steel. Steel Research International, 2020, 91, 2000114.	1.8	22
53	Precipitation kinetics of γ″ phase and its mechanism in a Nb-bearing nickel-based superalloy during aging. Vacuum, 2020, 178, 109456.	3.5	23
54	Evolutions of mechanical properties of AISI 304L stainless steel under shear loading. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 791, 139667.	5.6	14

#	Article	IF	CITATIONS
55	Effects of hot rolling and homogenisation treatment on low alloy steel ingot. Materials Science and Technology, 2020, 36, 835-842.	1.6	7
56	Crystallization kinetics of mechanically alloyed amorphous Fe-Ti alloys during annealing. Advanced Powder Technology, 2020, 31, 3215-3221.	4.1	10
57	A review of recent progress in mechanical and corrosion properties of dual phase steels. Archives of Civil and Mechanical Engineering, 2020, 20, 1.	3.8	44
58	Enhanced mechanical properties of as-cast AZ91 magnesium alloy by combined RE-Sr addition and hot extrusion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 792, 139817.	5.6	60
59	Hot deformation behavior and flow stress modeling of Ti–6Al–4V alloy produced via electron beam melting additive manufacturing technology in single β-phase field. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 792, 139822.	5.6	55
60	Elucidating the effects of microsegregation on the precipitation phenomena in as-cast Nb-bearing superalloy. Materials Letters, 2020, 266, 127481.	2.6	9
61	Tempering of Cold-Rolled Martensite in Mild Steel and Elucidating the Effects of Alloying Elements. Journal of Materials Engineering and Performance, 2020, 29, 858-865.	2.5	6
62	Unraveling the effects of surface preparation on the pitting corrosion resistance of austenitic stainless steel. Archives of Civil and Mechanical Engineering, 2020, 20, 1.	3.8	10
63	Phase Transformation Kinetics During Annealing of Cold-Rolled AISI 309Si Stainless Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51, 1955-1959.	2.2	9
64	Thermodynamics basis of saturation of martensite content during reversion annealing of cold rolled metastable austenitic steel. Vacuum, 2020, 174, 109220.	3.5	12
65	Significance of Martensite Reversion and Austenite Stability to the Mechanical Properties and Transformation-Induced Plasticity Effect of Austenitic Stainless Steels. Journal of Materials Engineering and Performance, 2020, 29, 3233-3242.	2.5	29
66	Two-step annealing treatment for grain refinement of cold-worked AISI 316L stainless steel. International Journal of Materials Research, 2020, 111, 676-680.	0.3	2
67	Revealing the As-Cast and Homogenized Microstructures of Niobium-Bearing Nickel-Based Superalloy. International Journal of Metalcasting, 2019, 13, 320-330.	1.9	12
68	Developing constitutive equations of flow stress for hot deformation of AZ31 magnesium alloy under compression, torsion, and tension. International Journal of Material Forming, 2019, 12, 643-648.	2.0	16
69	Interdiffusion coefficients of alloying elements in a typical Ni-based superalloy. Vacuum, 2019, 169, 108875.	3.5	26
70	Dependency of Natural Aging on the Ferritfoe Grain Size in Dual-Phase Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2019, 50, 4961-4964.	2.2	2
71	Unraveling the effects of Zn addition and hot extrusion process on the microstructure and mechanical properties of as-cast Mg–2Al magnesium alloy. Vacuum, 2019, 167, 214-222.	3.5	62
72	Mechanical properties of Mg-Al-Mn magnesium alloys with low Al content in the as-cast and extruded conditions. Materials Research Express, 2019, 6, 106521.	1.6	18

#	Article	IF	CITATIONS
73	Effects of Grain Size on Mechanical Properties and Workâ€Hardening Behavior of AISI 304 Austenitic Stainless Steel. Steel Research International, 2019, 90, 1900153.	1.8	101
74	Evaluating the Effect of Hotâ€Rolling Reduction on the Mechanical Properties of In Situ Formed Aluminum–Magnesium–Silicon (Alâ€Mg ₂ Si) Composites. Advanced Engineering Materials, 2019, 21, 1900609.	3 . 5	11
75	Aging kinetics and mechanical properties of copper-bearing low-carbon HSLA-100 microalloyed steel. Archives of Civil and Mechanical Engineering, 2019, 19, 1409-1418.	3.8	20
76	Constitutive modeling of flow stress during hot deformation of Sn–Al–Zn–Cu–Mg multi-principal-element alloy. Vacuum, 2019, 170, 108970.	3. 5	24
77	Phase transformation mechanism and kinetics during step quenching of st37 low carbon steel. Materials Research Express, 2019, 6, 1165f2.	1.6	10
78	Grain refinement and enhanced mechanical properties of ZK20 magnesium alloy via hot extrusion and mischmetal addition. Materials Research Express, 2019, 6, 116522.	1.6	14
79	Effect of Intercritical Annealing Conditions on Grain Growth Kinetics of Dual Phase Steel. Metals and Materials International, 2019, 25, 1039-1046.	3.4	30
80	Ferrite recrystallisation and intercritical annealing of cold-rolled low alloy medium carbon steel. Materials Science and Technology, 2019, 35, 1932-1941.	1.6	13
81	Improved Mechanical Properties of Structural Steel via Developing Bimodal Grain Size Distribution and Intercritical Heat Treatment. Journal of Materials Engineering and Performance, 2019, 28, 5409-5414.	2.5	9
82	Numerical and analytical solutions for determination of interdiffusion coefficients in superalloys during homogenization. Materials Today Communications, 2019, 21, 100631.	1.9	4
83	Amorphization and mechano-crystallization of high-energy ball milled Fe Ti alloys. Journal of Non-Crystalline Solids, 2019, 520, 119466.	3.1	14
84	Toward understanding the origins of poor ductility in a metal-matrix composite processed by accumulative roll bonding (ARB). Archives of Civil and Mechanical Engineering, 2019, 19, 958-966.	3.8	9
85	Tailoring the microstructure and mechanical properties of AISI 316L austenitic stainless steel via cold rolling and reversion annealing. Materials Science & Droperties, Microstructure and Processing, 2019, 759, 90-96.	5 . 6	127
86	Texture development during hot deformation of Al/Mg alloy reinforced with ceramic particles. Journal of Alloys and Compounds, 2019, 798, 267-272.	5 . 5	7
87	Effect of Si and Ni on microstructure and mechanical properties of in-situ magnesium-based composites in the as-cast and extruded conditions. Materials Chemistry and Physics, 2019, 232, 305-310.	4.0	25
88	Micro-mechanisms and precipitation kinetics of delta (\hat{l}) phase in Inconel 718 superalloy during aging. Journal of Alloys and Compounds, 2019, 795, 207-212.	5 . 5	65
89	Improved mechanical properties of mild steel via combination of deformation, intercritical annealing, and quench aging. Materials Science & Description A: Structural Materials: Properties, Microstructure and Processing, 2019, 756, 268-271.	5. 6	24
90	Homogenization kinetics of a typical nickel-based superalloy. Journal of Alloys and Compounds, 2019, 793, 277-282.	5 . 5	35

#	Article	IF	Citations
91	Fine tuning the mechanical properties of dual phase steel via thermomechanical processing of cold rolling and intercritical annealing. Materials Chemistry and Physics, 2019, 230, 1-8.	4.0	66
92	Effect of Intercritical Annealing Time at Pearlite Dissolution Finish Temperature (Ac1f) on Mechanical Properties of Low-Carbon Dual-Phase Steel. Journal of Materials Engineering and Performance, 2019, 28, 2178-2183.	2.5	8
93	A new intermetallic phase formation in Mg Si Ni magnesium-based in-situ formed alloys. Vacuum, 2019, 164, 349-354.	3.5	27
94	Constitutive analysis of wrought Mg-Gd magnesium alloys during hot compression at elevated temperatures. Journal of Alloys and Compounds, 2019, 791, 1200-1206.	5 . 5	72
95	Synergistic effects of holding time at intercritical annealing temperature and initial microstructure on the mechanical properties of dual phase steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 750, 125-131.	5 . 6	49
96	Static recrystallization kinetics of ferrite in cold-deformed medium carbon steel. Materials Research Express, 2019, 6, 1265g9.	1.6	7
97	Microstructure tailoring for property improvements of DP steel via cyclic intercritical annealing. Materials Research Express, 2019, 6, 126513.	1.6	6
98	Enhancement of the microstructure and elevated temperature mechanical properties of as-cast Mg‑Al2Ca‑Mg2Ca in-situ composite by hot extrusion. Materials Characterization, 2019, 147, 155-164.	4.4	41
99	Tempering of deformed and as-quenched martensite in structural steel. Journal of Mining and Metallurgy, Section B: Metallurgy, 2019, 55, 95-99.	0.8	10
100	Spheroidization heat treatment and intercritical annealing of low carbon steel. Journal of Mining and Metallurgy, Section B: Metallurgy, 2019, 55, 405-411.	0.8	11
101	The Effects of Grain Refinement and Rare Earth Intermetallics on Mechanical Properties of As-Cast and Wrought Magnesium Alloys. Journal of Materials Engineering and Performance, 2018, 27, 1327-1333.	2.5	57
102	Mechanical properties of a hot deformed Al-Mg2Si in-situ composite. Materials Science & Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 726, 10-17.	5.6	65
103	Enhanced Ductility of a Fineâ€Grained Mg–Gd–Al–Zn Magnesium Alloy by Hot Extrusion. Advanced Engineering Materials, 2018, 20, 1701171.	3.5	70
104	Refinement of Banded Structure via Thermal Cycling and Its Effects on Mechanical Properties of Dual Phase Steel. Steel Research International, 2018, 89, 1700531.	1.8	28
105	Microstructural Evolutions During Reversion Annealing of Cold-Rolled AISI 316 Austenitic Stainless Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 2248-2256.	2.2	68
106	Effect of Intercritical Annealing on Mechanical Properties and Workâ€Hardening Response of High Formability Dual Phase Steel. Steel Research International, 2018, 89, 1700412.	1.8	36
107	Dynamic deformation response of Al-Mg and Al-Mg/B4C composite at elevated temperatures. Materials Science & Science & Properties, Microstructure and Processing, 2018, 712, 645-654.	5.6	15
108	Enhancement of workâ€hardening behavior of dual phase steel by heat treatment. Materialwissenschaft Und Werkstofftechnik, 2018, 49, 1081-1086.	0.9	12

#	Article	IF	Citations
109	Effect of microstructural refinement and intercritical annealing time on mechanical properties of high-formability dual phase steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 736, 22-26.	5.6	83
110	Modeling the kinetics of deformation-induced martensitic transformation in AISI 316 metastable austenitic stainless steel. Vacuum, 2018, 157, 243-248.	3.5	58
111	Solidification behavior and Laves phase dissolution during homogenization heat treatment of Inconel 718 superalloy. Vacuum, 2018, 154, 235-243.	3.5	94
112	Microstructural investigation of Al-Mg/B4C composite deformed at elevated temperature. Journal of Alloys and Compounds, 2018, 763, 643-651.	5 . 5	17
113	Fine-grained dual phase steel via intercritical annealing of cold-rolled martensite. Vacuum, 2018, 155, 147-152.	3.5	56
114	Processing of fine grained AISI 304L austenitic stainless steel by cold rolling and high-temperature short-term annealing. Materials Research Express, 2018, 5, 056529.	1.6	19
115	Controlling the mechanical properties of carbon steel by thermomechanical treatment. AIP Conference Proceedings, 2018, , .	0.4	1
116	Enhancement of mechanical properties of low carbon dual phase steel via natural aging. Materials Science & Science amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 734, 178-183.	5.6	39
117	Mechanical properties and fracture behavior of intercritically annealed AISI 4130 chromoly steel. Materials Research Express, 2018, 5, 066548.	1.6	10
118	The effects of primary thermo-mechanical processing routes and intercritical annealing on the mechanical properties of st37 low carbon steel. Metallic Materials, 2018, 56, 297-303.	0.3	1
119	Effect of Drawing Strain on Development of Martensitic Transformation and Mechanical Properties in AISI 304L Stainless Steel Wire. Steel Research International, 2017, 88, 1600423.	1.8	8
120	Modification of Rule of Mixtures for Estimation of the Mechanical Properties of Dual-Phase Steels. Journal of Materials Engineering and Performance, 2017, 26, 2683-2688.	2.5	51
121	Synergistic effect of Al and Gd on enhancement of mechanical properties of magnesium alloys. Progress in Natural Science: Materials International, 2017, 27, 228-235.	4.4	56
122	Processing of Cu-Fe and Cu-Fe-SiC nanocomposites by mechanical alloying. Advanced Powder Technology, 2017, 28, 1882-1887.	4.1	43
123	Tailoring the Microstructure and Mechanical Properties of Dual Phase Steel Based on the Initial Microstructure. Steel Research International, 2017, 88, 1600385.	1.8	33
124	Elucidating the effect of intermetallic compounds on the behavior of Mg–Gd–Al–Zn magnesium alloys at elevated temperatures. Journal of Materials Research, 2017, 32, 4186-4195.	2.6	59
125	Unraveling the Initial Microstructure Effects on Mechanical Properties and Work-Hardening Capacity of Dual-Phase Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2017, 48, 4565-4573.	2.2	73
126	Enhanced mechanical properties of dual-phase steel by repetitive intercritical annealing. Canadian Metallurgical Quarterly, 2017, 56, 459-463.	1.2	31

#	Article	IF	CITATIONS
127	Toward unraveling the effects of intermetallic compounds on the microstructure and mechanical properties of Mg–Gd–Al–Zn magnesium alloys in the as-cast, homogenized, and extruded conditions. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 680, 39-46.	5.6	96
128	Toward Unraveling the Importance of Deformed Microstructure before TRIP Heat Treatment in Transformation-Induced Plasticity Steels. Steel Research International, 2017, 88, 1600275.	1.8	6
129	Physically based constitutive description of OFHC copper at hot working conditions. Metallic Materials, 2016, 53, 105-111.	0.3	7
130	Deformation of Pure Aluminum Along the Groove Path of ECAPâ€Conform Process. Advanced Engineering Materials, 2016, 18, 319-323.	3.5	11
131	Modification of As-cast Al-Mg/B4C composite by addition of Zr. Journal of Alloys and Compounds, 2016, 685, 70-77.	5.5	18
132	Prevention of surface hot shortness, development of banded structure, and mechanical properties of hot rolled Cu-bearing steel. Engineering Failure Analysis, 2016, 68, 132-137.	4.0	23
133	Elucidating the Effect of Alloying Elements on the Behavior of Austenitic Stainless Steels at Elevated Temperatures. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 5698-5703.	2.2	42
134	Physically-based constitutive modeling of NiTi intermetallic compound during hot deformation. Canadian Metallurgical Quarterly, 2016, 55, 387-390.	1.2	4
135	Microstructural Evolutions During Annealing of Plastically Deformed AISI 304 Austenitic Stainless Steel: Martensite Reversion, Grain Refinement, Recrystallization, and Grain Growth. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 4210-4216.	2.2	89
136	A comprehensive approach for quantitative characterization and modeling of composite microstructures. Applied Mathematical Modelling, 2016, 40, 8826-8831.	4.2	6
137	Toward unraveling the mechanisms responsible for the formation of ultrafine grained microstructure during tempering of cold rolled martensite. Materials Science & Dipineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 670, 252-255.	5.6	18
138	Unraveling the Effect of Homogenization Treatment on Decomposition of Austenite and Mechanical Properties of Lowâ€Alloyed TRIP Steel. Steel Research International, 2016, 87, 820-823.	1.8	13
139	A Simple Constitutive Model for Prediction of Single-Peak Flow Curves Under Hot Working Conditions. Journal of Engineering Materials and Technology, Transactions of the ASME, 2016, 138, .	1.4	20
140	Unraveling the Effect of Thermomechanical Treatment on the Dissolution of Delta Ferrite in Austenitic Stainless Steels. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 641-648.	2.2	12
141	A simple Zerilli–Armstrong constitutive equation for modeling and prediction of hot deformation flow stress of steels. Mechanics of Materials, 2016, 94, 38-45.	3.2	67
142	Dynamic recrystallization kinetics in Mg-3Gd-1Zn magnesium alloy during hot deformation. International Journal of Materials Research, 2016, 107, 277-279.	0.3	21
143	Crystal Plasticity Analysis of Texture Evolution of Pure Aluminum During Processing by a New Severe Plastic Deformation Technique. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 941-948.	2.2	2
144	Microstructural evolution and grain growth kinetics of GZ31 magnesium alloy. Materials Characterization, 2016, 118, 584-592.	4.4	33

#	Article	IF	Citations
145	Quantification of the strengthening effect of rare earth elements during hot deformation of Mg-Gd-Y-Zr magnesium alloy. Journal of Materials Research and Technology, 2016, 5, 1-4.	5.8	60
146	The effect of primary thermo-mechanical treatment on TRIP steel microstructure and mechanical properties. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 639, 402-406.	5.6	24
147	Constitutive behaviors of magnesium and Mg–Zn–Zr alloy during hot deformation. Materials Chemistry and Physics, 2015, 152, 123-126.	4.0	61
148	Prediction of Proper Temperatures for the Hot Stamping Process Based on the Kinetics Models. Journal of Materials Engineering and Performance, 2015, 24, 572-585.	2.5	9
149	Constitutive Description of 7075 Aluminum Alloy During Hot Deformation by Apparent and Physically-Based Approaches. Journal of Materials Engineering and Performance, 2015, 24, 1095-1099.	2.5	61
150	Enhanced Mechanical Properties of Microalloyed Austenitic Stainless Steel Produced by Martensite Treatment. Advanced Engineering Materials, 2015, 17, 1226-1233.	3.5	25
151	Hot compression behavior of GZ31 magnesium alloy. Journal of Alloys and Compounds, 2015, 631, 1-6.	5.5	54
152	Multiâ€Axial Incremental Forging and Shearing as a New Severe Plastic Deformation Processing Technique. Advanced Engineering Materials, 2015, 17, 1197-1207.	3.5	7
153	Constitutive modeling and prediction of hot deformation flow stress under dynamic recrystallization conditions. Mechanics of Materials, 2015, 85, 66-79.	3.2	94
154	A Simplified Approach for Developing Constitutive Equations for Modeling and Prediction of Hot Deformation Flow Stress. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 4027-4037.	2.2	70
155	Simple physically-based constitutive equations for hot deformation of 2024 and 7075 aluminum alloys. Transactions of Nonferrous Metals Society of China, 2015, 25, 1614-1618.	4.2	54
156	A simple constitutive model for predicting flow stress of medium carbon microalloyed steel during hot deformation. Materials & Design, 2015, 77, 126-131.	5.1	96
157	Hot deformation behavior, dynamic recrystallization, and physically-based constitutive modeling of plain carbon steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 636, 196-202.	5.6	140
158	Nano/ultrafine grained austenitic stainless steel through the formation and reversion of deformation-induced martensite: Mechanisms, microstructures, mechanical properties, and TRIP effect. Materials Characterization, 2015, 103, 150-161.	4.4	113
159	Mathematical modeling of energy transfer to sheet surface layers and optimization of roll bonding strength. International Journal of Materials Research, 2015, 106, 1250-1257.	0.3	1
160	Dependency of Deformation Behavior of Retained Austenite in TRIP Steels on Microstructural and Chemical Homogeneity. Acta Metallurgica Sinica (English Letters), 2015, 28, 1272-1277.	2.9	6
161	Rate controlling mechanisms during hot deformation of Mg–3Gd–1Zn magnesium alloy: Dislocation glide and climb, dynamic recrystallization, and mechanical twinning. Materials & Design, 2015, 68, 228-231.	5.1	97
162	Estimation of the kinetics of martensitic transformation in austenitic stainless steels by conventional and novel approaches. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 624, 256-260.	5.6	29

#	Article	IF	Citations
163	Quantification of the strengthening effect of reinforcements during hot deformation of aluminum-based composites. Materials & Design, 2015, 65, 80-82.	5.1	56
164	Molecular dynamics simulation of stress field around edge dislocations in Aluminum. Computational Materials Science, 2014, 84, 83-96.	3.0	17
165	Optimization of turning process using artificial intelligence technology. International Journal of Advanced Manufacturing Technology, 2014, 70, 1205-1217.	3.0	33
166	A comparative study on the hot flow stress of Mg–Al–Zn magnesium alloys using a simple physically-based approach. Journal of Magnesium and Alloys, 2014, 2, 225-229.	11.9	58
167	Prediction of Temperatures of Austenite Equilibrium Transformations in Steels During Thermomechanical Processing. Journal of Materials Engineering and Performance, 2014, 23, 3710-3717.	2.5	1
168	Abnormal grain growth in AISI 304L stainless steel. Materials Characterization, 2014, 97, 11-17.	4.4	50
169	Hot deformation and dynamic recrystallization of NiTi intermetallic compound. Journal of Alloys and Compounds, 2014, 614, 56-59.	5.5	71
170	Microstructural Evolution During Normal/Abnormal Grain Growth in Austenitic Stainless Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014, 45, 5185-5193.	2.2	44
171	Estimating interface bonding strength in clad sheets based on tensile test results. Materials & Design, 2014, 64, 307-309.	5.1	16
172	Constitutive description of severely deformed metals based on dimensional analysis. Materials Science and Technology, 2014, 30, 719-724.	1.6	5
173	Cladding of aluminum on AISI 304L stainless steel by cold roll bonding: Mechanism, microstructure, and mechanical properties. Materials Science & Digineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 613, 232-239.	5.6	105
174	Constitutive analysis of Mg–Al–Zn magnesium alloys during hot deformation. Mechanics of Materials, 2014, 77, 80-85.	3.2	122
175	Development of dynamic recrystallization maps based on the initial grain size. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 565, 90-95.	5.6	22
176	Hot deformation behavior of austenitic stainless steel for a wide range of initial grain size. Materials Science & Science & Properties, Microstructure and Processing, 2013, 569, 54-60.	5.6	80
177	Hot Deformation and Dynamic Recrystallization of 17-4 PH Stainless Steel. ISIJ International, 2013, 53, 680-689.	1.4	72
178	EBSD study of a hot deformed austenitic stainless steel. Materials Science & Direction A: Structural Materials: Properties, Microstructure and Processing, 2012, 538, 236-245.	5.6	201
179	Modeling and Prediction of Hot Deformation Flow Curves. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2012, 43, 108-123.	2.2	95
180	Modeling the compressive strength of cement mortar nano-composites. Computers and Concrete, 2012, 10, 49-57.	0.7	3

#	Article	IF	CITATIONS
181	Constitutive relationships for hot deformation of austenite. Acta Materialia, 2011, 59, 6441-6448.	7.9	249
182	Hot deformation behavior of a medium carbon microalloyed steel. Materials Science & Sc	5 . 6	229
183	Flow stress prediction at hot working conditions. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 1160-1164.	5.6	79
184	Extrapolation of flow curves at hot working conditions. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 1856-1860.	5.6	52
185	Grain growth in nanocrystalline iron and Fe-Al alloys. Metals and Materials International, 2010, 16, 83-86.	3.4	1
186	Prediction of the critical conditions for initiation of dynamic recrystallization. Materials & Design, 2010, 31, 1174-1179.	5.1	219
187	The rate of dynamic recrystallization in 17-4 PH stainless steel. Materials & Design, 2010, 31, 4577-4583.	5.1	64
188	Hot deformation behaviour of precipitation hardening stainless steel. Materials Science and Technology, 2010, 26, 501-504.	1.6	12
189	Ball milling criteria for producing nano intermetallic compounds. Materials Science and Technology, 2010, 26, 281-284.	1.6	11
190	Evaluation of cast-on-strap joints in lead-acid batteries. Materials Characterization, 2009, 60, 1555-1560.	4.4	4
191	Aging kinetics of 17-4 PH stainless steel. Materials Chemistry and Physics, 2009, 116, 119-124.	4.0	115
192	Flow Curve Analysis of 17-4ÂPH Stainless Steel under Hot Compression Test. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2009, 40, 2950-2958.	2.2	121
193	Fluidity of Al–Si semisolid slurries during rheocasting by a novel process. Journal of Materials Processing Technology, 2009, 209, 4977-4982.	6.3	24
194	Modeling the reversion of martensite in the cold worked AISI 304 stainless steel by artificial neural networks. Materials & Design, 2009, 30, 570-573.	5.1	30
195	Effects of rheocasting parameters on the microstructure of rheo-centrifuged cast Al–7.1wt%Si alloy. Journal of Alloys and Compounds, 2009, 474, 257-263.	5.5	14
196	ANN modeling of strain-induced martensite and its applications in metastable austenitic stainless steels. Journal of Alloys and Compounds, 2009, 476, 352-355.	5.5	35
197	Correlation between processing parameters and strain-induced martensitic transformation in cold worked AISI 301 stainless steel. Materials Characterization, 2008, 59, 1650-1654.	4.4	74
198	Semi-Solid Casting of Al-7wt%Si Alloy in Expendable Molds. Solid State Phenomena, 2006, 116-117, 497-500.	0.3	2

#	Article	IF	CITATIONS
199	Semi-Solid Casting of Al-7wt%Si Alloy in Expendable Molds. Solid State Phenomena, 0, , 497-500.	0.3	1