Wuqiang Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/104277/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Large Cardiac Muscle Patches Engineered From Human Induced-Pluripotent Stem Cell–Derived Cardiac Cells Improve Recovery From Myocardial Infarction in Swine. Circulation, 2018, 137, 1712-1730.	1.6	332
2	Acute Doxorubicin Cardiotoxicity Is Associated With p53-Induced Inhibition of the Mammalian Target of Rapamycin Pathway. Circulation, 2009, 119, 99-106.	1.6	190
3	Regenerative Potential of Neonatal Porcine Hearts. Circulation, 2018, 138, 2809-2816.	1.6	179
4	Can We Engineer a Human Cardiac Patch for Therapy?. Circulation Research, 2018, 123, 244-265.	4.5	121
5	CCND2 Overexpression Enhances the Regenerative Potency of Human Induced Pluripotent Stem Cell–Derived Cardiomyocytes. Circulation Research, 2018, 122, 88-96.	4.5	113
6	VEGF nanoparticles repair the heart after myocardial infarction. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 314, H278-H284.	3.2	101
7	Overcoming the Roadblocks to Cardiac Cell Therapy Using Tissue Engineering. Journal of the American College of Cardiology, 2017, 70, 766-775.	2.8	82
8	Spheroids of cardiomyocytes derived from human-induced pluripotent stem cells improve recovery from myocardial injury in mice. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 315, H327-H339.	3.2	65
9	A Mouse Model for Juvenile Doxorubicin-Induced Cardiac Dysfunction. Pediatric Research, 2008, 64, 488-494.	2.3	61
10	Cyclin D2 Overexpression Enhances the Efficacy of Human Induced Pluripotent Stem Cell–Derived Cardiomyocytes for Myocardial Repair in a Swine Model of Myocardial Infarction. Circulation, 2021, 144, 210-228.	1.6	61
11	Optogenetics: Background, Methodological Advances and Potential Applications for Cardiovascular Research and Medicine. Frontiers in Bioengineering and Biotechnology, 2019, 7, 466.	4.1	57
12	Targeting exosomeâ€associated human antigen R attenuates fibrosis and inflammation in diabetic heart. FASEB Journal, 2020, 34, 2238-2251.	0.5	50
13	CHIR99021 and fibroblast growth factor 1 enhance the regenerative potency of human cardiac muscle patch after myocardial infarction in mice. Journal of Molecular and Cellular Cardiology, 2020, 141, 1-10.	1.9	40
14	Cardiomyocyte proliferation prevents failure in pressure overload but not volume overload. Journal of Clinical Investigation, 2017, 127, 4285-4296.	8.2	31
15	Y-27632 preconditioning enhances transplantation of human-induced pluripotent stem cell-derived cardiomyocytes in myocardial infarction mice. Cardiovascular Research, 2019, 115, 343-356.	3.8	30
16	N-cadherin overexpression enhances the reparative potency of human-induced pluripotent stem cell-derived cardiac myocytes in infarcted mouse hearts. Cardiovascular Research, 2020, 116, 671-685.	3.8	25
17	Biomarkers for monitoring chemotherapy-induced cardiotoxicity. Critical Reviews in Clinical Laboratory Sciences, 2017, 54, 87-101.	6.1	22
18	Utilization of Human Induced Pluripotent Stem Cells for Cardiac Repair. Frontiers in Cell and Developmental Biology, 2020, 8, 36.	3.7	20

WUQIANG ZHU

#	Article	IF	CITATIONS
19	Cardiomyocytes from CCND2-overexpressing human induced-pluripotent stem cells repopulate the myocardial scar in mice: A 6-month study. Journal of Molecular and Cellular Cardiology, 2019, 137, 25-33.	1.9	19
20	Targeted expression of cyclin D2 ameliorates late stage anthracycline cardiotoxicity. Cardiovascular Research, 2019, 115, 960-965.	3.8	19
21	Minimally Invasive Delivery of 3D Shape Recoverable Constructs with Ordered Structures for Tissue Repair. ACS Biomaterials Science and Engineering, 2021, 7, 2204-2211.	5.2	16
22	Myocardial protection by nanomaterials formulated with CHIR99021 and FGF1. JCI Insight, 2020, 5, .	5.0	15
23	Protein phosphatase 5 and the tumor suppressor p53 down-regulate each other's activities in mice. Journal of Biological Chemistry, 2018, 293, 18218-18229.	3.4	14
24	Cell-Cycle-Based Strategies to Drive Myocardial Repair. Pediatric Cardiology, 2009, 30, 710-715.	1.3	12
25	Fluorescent indicators for continuous and lineageâ€specific reporting of cellâ€cycle phases in human pluripotent stem cells. Biotechnology and Bioengineering, 2020, 117, 2177-2186.	3.3	10
26	Pluripotent Stem Cell Derived Cardiac Cells for Myocardial Repair. Journal of Visualized Experiments, 2017, , .	0.3	9
27	Circular RNAs and Cardiovascular Regeneration. Frontiers in Cardiovascular Medicine, 2021, 8, 672600.	2.4	5
28	Editorial: Nanotechnology in Cardiovascular Regenerative Medicine. Frontiers in Bioengineering and Biotechnology, 2020, 8, 608844.	4.1	5
29	Nanofiber capsules for minimally invasive sampling of biological specimens from gastrointestinal tract. Acta Biomaterialia, 2022, 146, 211-221.	8.3	5
30	Identification of metabolic pathways underlying FGF1 and CHIR99021-mediated cardioprotection. IScience, 2022, 25, 104447.	4.1	5
31	Enhancing the Engraftment of Human Induced Pluripotent Stem Cell-derived Cardiomyocytes via a Transient Inhibition of Rho Kinase Activity. Journal of Visualized Experiments, 2019, , .	0.3	4
32	31P NMR 2D Mapping of Creatine Kinase Forward Flux Rate in Hearts with Postinfarction Left Ventricular Remodeling in Response to Cell Therapy. PLoS ONE, 2016, 11, e0162149.	2.5	4
33	Turning back the clock: A concise viewpoint of cardiomyocyte cell cycle activation for myocardial regeneration and repair. Journal of Molecular and Cellular Cardiology, 2022, 170, 15-21.	1.9	4
34	Metabolic Profile in Neonatal Pig Hearts. Frontiers in Cardiovascular Medicine, 2021, 8, 763984.	2.4	3
35	Meeting Report for the 2017 National Institutes of Health National Heart, Lung, and Blood Institute Progenitor Cell Biology Consortium. Circulation Research, 2017, 120, 1709-1712.	4.5	2
36	De novo Drug Delivery Modalities for Treating Damaged Hearts: Current Challenges and Emerging Solutions. Frontiers in Cardiovascular Medicine, 2021, 8, 742315.	2.4	2

WUQIANG ZHU

#	Article	IF	CITATIONS
37	Optogenetic Control of Engrafted Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes in Live Mice: A Proof-of-Concept Study. Cells, 2022, 11, 951.	4.1	2
38	Cyclin D2â€mediated cardiomyocyte cell cycle activity reverses doxorubicinâ€induced cardiotoxicity. FASEB Journal, 2013, 27, 1105.26.	0.5	0
39	The pivotal role of p53 in doxorubicinâ€induced acute versus chronic cardiotoxicity. FASEB Journal, 2013, 27, 528.2.	0.5	0