Erdener KaradaÄŸ

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10425990/publications.pdf

Version: 2024-02-01

85 2,478 27 46 papers citations h-index g-index

85 85 85 1564 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Swelling equilibria and dye adsorption studies of chemically crosslinked superabsorbent acrylamide/maleic acid hydrogels. European Polymer Journal, 2002, 38, 2133-2141.	2.6	195
2	A review on the radiation synthesis of copolymeric hydrogels for adsorption and separation purposes. Radiation Physics and Chemistry, 1999, 56, 381-386.	1.4	130
3	Radiation Induced Superabsorbent Hydrogels. Acrylamide/Itaconic Acid Copolymers. Macromolecular Materials and Engineering, 2001, 286, 34-42.	1.7	102
4	Behaviors of Acrylamide/Itaconic Acid Hydrogels in Uptake of Uranyl Ions from Aqueous Solutions. Separation Science and Technology, 1995, 30, 3747-3760.	1.3	98
5	Swelling studies of copolymeric acrylamide/crotonic acid hydrogels as carriers for agricultural uses. Polymers for Advanced Technologies, 2000, $11,59-68$.	1.6	92
6	Swelling and dye sorption studies of acrylamide/2-acrylamido-2-methyl-1-propanesulfonic acid/bentonite highly swollen composite hydrogels. Reactive and Functional Polymers, 2008, 68, 458-473.	2.0	92
7	Acrylamide/maleic acid hydrogels. Polymers for Advanced Technologies, 1995, 6, 719-726.	1.6	84
8	Adsorptions of Some Heavy Metal Ions in Aqueous Solutions by Acrylamide/Maleic Acid Hydrogels. Separation Science and Technology, 1995, 30, 3287-3298.	1.3	81
9	Swelling studies of super water retainer acrylamide/crotonic acid hydrogels crosslinked by trimethylolpropane triacrylate and 1,4-butanediol dimethacrylate. Polymer Bulletin, 2002, 48, 299-307.	1.7	76
10	Adsorption of bovine serum albumin onto acrylamid—maleic acid hydrogels. Biomaterials, 1994, 15, 917-920.	5.7	62
11	Swelling and dye adsorption properties of radiation induced N -vinyl-2-pyrrolidone/acrylonitrile hydrogels. Polymer Bulletin, 1998, 41, 371-378.	1.7	61
12	Interaction of some cationic dyes with acrylamide/itaconic acid hydrogels. Journal of Applied Polymer Science, 1996, 61, 2367-2372.	1.3	55
13	Water uptake in chemically crosslinked poly(acrylamide-co-crotonic acid) hydrogels. Materials & Design, 2005, 26, 265-270.	5.1	52
14	Adsorption of bovine serum albumin to acrylamide–itaconic acid hydrogels. Polymers for Advanced Technologies, 1994, 5, 664-668.	1.6	51
15	Use of superswelling acrylamide/maleic acid hydrogels for monovalent cationic dye adsorption. Journal of Applied Polymer Science, 2001, 79, 1809-1815.	1.3	51
16	The releases of agrochemicals from radiation induced acrylamide/crotonic acid hydrogels. Polymer Bulletin, 1998, 41, 577-584.	1.7	45
17	Water absorbency studies of Î ³ -radiation crosslinked poly(acrylamide-co-2,3-dihydroxybutanedioic acid) hydrogels. Nuclear Instruments & Methods in Physics Research B, 2004, 225, 489-496.	0.6	41
18	Dynamic swelling behavior of \hat{l}^3 -radiation induced polyelectrolyte poly(AAm-co-CA) hydrogels in urea solutions. International Journal of Pharmaceutics, 2005, 301, 102-111.	2.6	41

#	Article	IF	CITATIONS
19	Adsorption of Some Basic Dyes by Acrylamide-Maleic Acid Hydrogels. Separation Science and Technology, 1996, 31, 423-434.	1.3	40
20	RADIATION INDUCED ACRYLAMIDE/CITRIC ACID HYDROGELS AND THEIR SWELLING BEHAVIORS. Journal of Macromolecular Science - Pure and Applied Chemistry, 2001, 38, 1105-1121.	1.2	40
21	Water Sorption and Dye Uptake Studies of Highly Swollen AAm/AMPS Hydrogels and Semi-IPNs with PEG. Polymer-Plastics Technology and Engineering, 2009, 48, 1217-1229.	1.9	40
22	Relationship between the swelling process and the releases of water soluble agrochemicals from radiation crosslinked acrylamide/itaconic acid copolymers. Polymer Bulletin, 2000, 45, 287-294.	1.7	35
23	Immobilization of Saccharomyces cerevisiae on to acrylamide–sodium acrylate hydrogels for production of ethyl alcohol. Enzyme and Microbial Technology, 2003, 32, 114-119.	1.6	35
24	Synthetic polymeric absorbent for dye based on chemically crosslinked acrylamide/mesaconic acid hydrogels. Journal of Applied Polymer Science, 2006, 101, 405-413.	1.3	35
25	Super Water-Retainer Hydrogels: Crosslinked Acrylamide/Succinic Acid Copolymers. Polymer Journal, 1997, 29, 631-636.	1.3	29
26	In vivo biocompatibility of radiation crosslinked acrylamide copolymers. Nuclear Instruments & Methods in Physics Research B, 2004, 217, 281-292.	0.6	29
27	A study on water and dye sorption capacities of novel ternary acrylamide/sodium acrylate/PEG semi IPN hydrogels. Polymer Bulletin, 2012, 68, 1357-1368.	1.7	27
28	Cationic dye adsorption by acrylamide/itaconic acid hydrogels in aqueous solutions. Polymers for Advanced Technologies, 1997, 8, 574-578.	1.6	26
29	Influence of Some Amino Acids on the Dynamic Swelling Behavior of Radiation-Induced Acrylamide Hydrogel. Applied Biochemistry and Biotechnology, 1999, 82, 115-126.	1.4	26
30	Swelling characterization of gamma-radiation induced crosslinked acrylamide/maleic acid hydrogels in urea solutions. Materials & Design, 2006, 27, 576-584.	5.1	25
31	In vitro dynamic swelling behaviors of radiation synthesized polyacrylamide with crosslinkers in the simulated physiological body fluids. Nuclear Instruments & Methods in Physics Research B, 2002, 187, 340-344.	0.6	24
32	Polyelectrolyte CASA hydrogels for uptake of uranyl ions from aqueous solutions. Journal of Applied Polymer Science, 2007, 104, 200-204.	1.3	24
33	Highly Swollen Polymer/Clay Composite Sorbent-Based AAm/AMPS Hydrogels and Semi-IPNs Composed of Carboxymethyl Cellulose and Montmorillonite and Cross-Linked by PEGDA. Polymer-Plastics Technology and Engineering, 2014, 53, 54-64.	1.9	23
34	A Study on the Correlation Between Adsorption and Swelling for Poly(Hydroxamic Acid) Hydrogels-Triarylmethane Dyes Systems. Journal of Polymers and the Environment, 2018, 26, 3924-3936.	2.4	23
35	Equilibrium Swelling Studies of Chemically Cross-Linked Highly Swollen Acrylamide-Sodium Acrylate Hydrogels in Various Water-Solvent Mixtures. Polymer-Plastics Technology and Engineering, 2010, 49, 609-616.	1.9	22
36	Dye Sorption and Water Uptake Properties of Crosslinked Acrylamide/Sodium Methacrylate Copolymers and Semi-Interpenetrating Polymer Networks Composed of PEG. Separation Science and Technology, 2011, 46, 489-499.	1.3	22

#	Article	IF	CITATIONS
37	A new composite sorbent for water and dye uptake: Highly swollen acrylamide/2â€acrylamidoâ€2â€methylâ€1â€propanesulfonic acid/clay hydrogels crosslinked by 1,4â€butanediol dimethacrylate. Polymer Composites, 2009, 30, 29-37.	2.3	21
38	Interaction of nicotine and its pharmaceutical derivatives with acrylamide/itaconic acid hydrogels. Journal of Applied Polymer Science, 1997, 66, 733-739.	1.3	19
39	The use of immobilized Saccharomyces cerevisiae on radiation crosslinked acrylamide–maleic acid hydrogel carriers for production of ethyl alcohol. Process Biochemistry, 2002, 37, 1351-1357.	1.8	19
40	A Novel Polymeric Adsorbent for Water and Dye Uptake: Acrylamide/Sodium Acrylate Copolymers and Semi-Interpenetrating Polymer Networks Composed of Gelatin and/or PVA. Polymer-Plastics Technology and Engineering, 2012, 51, 1513-1523.	1.9	19
41	Uptake of Basic Blue 17 from aqueous solutions by using chemically crosslinked polyelectrolyte AAm/AASS hydrogels. Adsorption, 2006, 12, 77-88.	1.4	18
42	Equilibrium Swelling Characterization and Dye Uptake Studies of Acrylamide-co-Methylenesuccinic Acid Hydrogels and Semi-IPNs with PEG. Polymer-Plastics Technology and Engineering, 2011, 50, 947-956.	1.9	18
43	Application of highly swollen novel biosorbent hydrogels in uptake of uranyl ions from aqueous solutions. Fibers and Polymers, 2015, 16, 2165-2176.	1.1	18
44	Behaviors of Acrylamide/Maleic Acid Hydrogels in Uptake of Some Cationic Dyes from Aqueous Solutions. Separation Science and Technology, 1996, 31, 2359-2371.	1.3	17
45	Removal of some cationic dyes from aqueous solutions by acrylamide/itaconic acid hydrogels. Water, Air, and Soil Pollution, 1998, 106, 369-378.	1.1	17
46	Uranyl Ion Uptake from Aqueous Solutions by Chemically Cross-linked Polyelectrolyte CAMA Hydrogels. Polymer-Plastics Technology and Engineering, 2007, 46, 775-780.	1.9	17
47	Swelling characterization of poly (acrylamide-co-N-vinylimidazole) hydrogels crosslinked by TMPTA and semi-IPN's with PEG. Journal of Polymer Research, 2007, 14, 483-488.	1.2	17
48	A Study of Polymer/Clay Hybrid Composite Sorbentâ∈Based AAm/SMA Hydrogels and Semiâ€IPNs Composed of <i>É©</i> â€Carrageenan and Montmorillonite for Water and Dye Sorption. Advances in Polymer Technology, 2014, 33, .	0.8	17
49	Water uptake and dye sorption studies of chemically crosslinked highly swollen novel ternary acrylamideâ€based hydrogels including citraconic acid and sodium acrylate. Polymers for Advanced Technologies, 2008, 19, 775-784.	1.6	15
50	Radiationâ€Synthesized Acrylamide/Crotonic Acid Hydrogels for Selective Mercury (<scp>II</scp>) Ion Adsorption. Advances in Polymer Technology, 2018, 37, 822-829.	0.8	15
51	Influence of some aromatic amino acids on the swelling behavior of acrylamide/maleic acid hydrogel. Polymer Bulletin, 1998, 40, 575-581.	1.7	14
52	Swelling and dye sorption studies of AAm/SA hydrogels crosslinked by glutaraldehyde and divinylbenzene. Journal of Applied Polymer Science, 2007, 105, 2646-2654.	1.3	14
53	Novel composite sorbent AAm/MA hydrogels containing starch and kaolin for water sorption and dye uptake. Bulletin of Materials Science, 2014, 37, 1637-1646.	0.8	14
54	Polymeric absorbent for water sorption based on chemically crosslinked poly (acrylamide/2-acrylamido-2-methyl-1-propanesulfonic acid sodium salt) hydrogels. Polymer Bulletin, 2006, 57, 703-712.	1.7	13

#	Article	IF	CITATIONS
55	Behaviors of Chemically Crosslinked CAAMPS Hydrogels in Uptake of Uranyl Ions from Aqueous Solutions. Polymer-Plastics Technology and Engineering, 2008, 48, 69-74.	1.9	13
56	Water and Dye Uptake Studies of Acrylamide/4â€Styrenesulfonic Acid Sodium Salt Copolymers and Semiâ€Interpenetrating Polymer Networks Composed of Gelatin and/or PVA. Advances in Polymer Technology, 2013, 32, .	0.8	13
57	Acrylamide/potassium 3-sulfopropyl methacrylate/sodium alginate/bentonite hybrid hydrogels: Synthesis, characterization and its application in lauths violet removal from aqueous solutions. Fibers and Polymers, 2017, 18, 9-21.	1.1	13
58	A New Sorbent Chemically Cross-linked Highly Swollen Copolymeric Hydrogels for Dye Uptake. Polymer-Plastics Technology and Engineering, 2006, 45, 1277-1283.	1.9	12
59	Swelling equilibria of novel propenamide/2-acrylamido-2-methyl-1-propanesulfonic acid/guar gum/clinoptilolite biohybrid hydrogels and application as a sorbent for BV1 removal. Polymer Bulletin, 2021, 78, 3625-3649.	1.7	12
60	Binding of some dyes onto crosslinked poly (N-vinylpyrrolidone). Polymer Bulletin, 2000, 44, 501-508.	1.7	11
61	Investigation of Swelling/Sorption Characteristics of Highly Swollen AAm/AMPS Hydrogels and Semi IPNs with PEG as Biopotential Sorbent. Journal of Encapsulation and Adsorption Sciences, 2011, 01, 7-22.	0.3	11
62	Swelling Characterization and Adsorptive Features of Acrylamide/Itaconic Acid Hydrogels and Semi-IPNs for Uranyl Ions. Polymer-Plastics Technology and Engineering, 2012, 51, 1550-1561.	1.9	11
63	Swelling Characterization of Acrylamide/Zinc Acrylate/Xanthan Gum/Sepiolite Hybrid Hydrogels and Its Application in Sorption of Janus Green B from Aqueous Solutions. Advances in Polymer Technology, 2016, 35, 248-259.	0.8	11
64	Sorption for removing Lauths Violets in aqueous solutions by chemically crosslinked poly(AAm-co-SA) hydrogels. Polymer Bulletin, 2005, 53, 387-392.	1.7	10
65	Swelling Characterization of Polyelectrolyte Poly(Hydroxamic Acid) Hydrogels in Aqueous Thiazin Dye Solutions. Polymer-Plastics Technology and Engineering, 2006, 45, 729-734.	1.9	9
66	Enhanced enzymatic activity and stability by in situ entrapment of \hat{l}_{\pm} -Glucosidase within super porous p(HEMA) cryogels during synthesis. Biotechnology Reports (Amsterdam, Netherlands), 2020, 28, e00534.	2.1	9
67	Equilibrium swelling studies of highly swollen acrylamide/mesaconic acid hydrogels. Journal of Applied Polymer Science, 2005, 96, 2253-2259.	1.3	8
68	Swelling characterization of novel ternary semi-IPNs: acrylamide/1-vinylimidazole/PEG hydrogels. Polymers for Advanced Technologies, 2007, 18, 483-489.	1.6	8
69	Behaviors of polyelectrolyte AAm/AMPS/bentonite composite hydrogels in uptake of uranyl ions from aqueous solutions. Polymer Composites, 2011, 32, 994-1001.	2.3	8
70	Montmorillonite Loaded Highly Swollen AAm/AMPS Hydrogels and Semi-IPNs with PEG as a Novel Composite Polymeric Sorbent for Water and Dye Sorption. Polymer-Plastics Technology and Engineering, 2014, 53, 1259-1271.	1.9	8
71	Adsorption of phenazine dyes using poly(hydroxamic acid) hydrogels from aqueous solutions. Polymer Engineering and Science, 2018, 58, 310-318.	1.5	8
72	Synthesis and application of acrylamide/sodium vinylsulfonate/carboxymethyl cellulose/zeolite hybrid hydrogels as highly swollen effective adsorbents for model cationic dye removal., 0, 74, 402-414.		8

#	Article	IF	CITATIONS
73	Equilibrium Swelling Studies of Highly Swollen Acrylamide/Thiosinamine Hydrogels. Polymer-Plastics Technology and Engineering, 2009, 48, 152-157.	1.9	7
74	Investigation of sorption/swelling characteristics of chemically crosslinked AAm/SMA hydrogels as biopotential sorbent. Journal of Applied Polymer Science, 2010, 117, 1787-1797.	1.3	7
75	Equilibrium swelling studies and dye sorption characterization of AAm/SA hydrogels crossâ€linked by PEGDMA and semiâ€iPNs with PEG. Advances in Polymer Technology, 2012, 31, 141-153.	0.8	7
76	Uranyl Ion Sorption Characteristics of Novel Polymer/Montmorillonite/Carboxymethyl Celluloseâ€Composite Biosorbentâ€Based <scp>AA</scp> m/ <scp>AMPS</scp> Hydrogels and Semiâ€ <scp>IPN</scp> s. Advances in Polymer Technology, 2018, 37, 575-585.	0.8	7
77	Preliminary swelling and dye sorption studies of acrylamide/4-styrenesulfonic acid sodium salt copolymers and semi-interpenetrating polymer networks composed of gelatin and/or PEG. Polymer Bulletin, 2014, 71, 351-370.	1.7	6
78	Swelling and dye adsorption properties of polyelectrolyte semi-IPNs including of acrylamide/(3-acrylamidopropyl)trimethyl ammonium chloride/poly(ethylene glycol). Separation Science and Technology, 2020, 55, 3307-3319.	1.3	5
79	Behavior of semi IPN hydrogels composed of PEG and AAm/SMA copolymers in swelling and uptake of Janus Green B from aqueous solutions. Journal of Applied Polymer Science, 2012, 125, 3318-3328.	1.3	4
80	Water Sorption Studies and Adsorptive Features of Highly Swollen Acrylamide-Based Ternary Hydrogels for Uranyl Ions. Polymer-Plastics Technology and Engineering, 2013, 52, 783-794.	1.9	4
81	Swelling behaviors of novel magnetic semi-IPN hydrogels and their application for Janus Green B removal. Polymer Bulletin, 2020, 77, 847-867.	1.7	4
82	Water and dye sorption studies of novel semi IPNs: Acrylamide/4â€styrenesulfonic acid sodium salt/peg hydrogels. Polymer Engineering and Science, 2013, 53, 1262-1271.	1.5	3
83	Uranyl Ion Uptake Properties of Highly Swollen AAm/SA/GEL/PVA Semi IPNs as Novel Biosorbent. Polymer-Plastics Technology and Engineering, 2016, 55, 15-24.	1.9	2
84	Swelling studies of copolymeric acrylamide/crotonic acid hydrogels as carriers for agricultural uses. Polymers for Advanced Technologies, 2000, 11, 59-68.	1.6	2
85	Thermal gelation of poly(vinyl chloride). Polymer International, 1995, 38, 83-87.	1.6	1