Manuel Serrano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1042272/publications.pdf

Version: 2024-02-01

3731 57,938 278 89 citations h-index papers

g-index 292 292 292 56202 docs citations times ranked citing authors all docs

1072

233

#	Article	IF	CITATIONS
1	Senescence as a therapeutic target. , 2022, , 425-442.		2
2	Meeting Report: Aging Research and Drug Discovery. Aging, 2022, 14, 530-543.	3.1	4
3	SOX9 Triggers Different Epithelial to Mesenchymal Transition States to Promote Pancreatic Cancer Progression. Cancers, 2022, 14, 916.	3.7	6
4	Multiâ€omic rejuvenation of naturally aged tissues by a single cycle of transient reprogramming. Aging Cell, 2022, 21, e13578.	6.7	60
5	Natural killer cells act as an extrinsic barrier for <i>in vivo</i> reprogramming. Development (Cambridge), 2022, 149, .	2.5	12
6	Apoptosis, G1 Phase Stall, and Premature Differentiation Account for Low Chimeric Competence of Human and Rhesus Monkey Naive Pluripotent Stem Cells. Stem Cell Reports, 2021, 16, 56-74.	4.8	25
7	MED15 prion-like domain forms a coiled-coil responsible for its amyloid conversion and propagation. Communications Biology, 2021, 4, 414.	4.4	12
8	Dissection of two routes to na \tilde{A} ve pluripotency using different kinase inhibitors. Nature Communications, 2021, 12, 1863.	12.8	15
9	Stability of Imprinting and Differentiation Capacity in NaÃ-ve Human Cells Induced by Chemical Inhibition of CDK8 and CDK19. Cells, 2021, 10, 876.	4.1	O
10	Restoration of energy homeostasis by SIRT6 extends healthy lifespan. Nature Communications, 2021, 12, 3208.	12.8	98
11	Cellular Senescence in Lung Fibrosis. International Journal of Molecular Sciences, 2021, 22, 7012.	4.1	33
12	RANK links senescence to stemness in the mammary epithelia, delaying tumor onset but increasing tumor aggressiveness. Developmental Cell, 2021, 56, 1727-1741.e7.	7.0	21
13	Activation of p21 limits acute lung injury and induces early senescence after acid aspiration and mechanical ventilation. Translational Research, 2021, 233, 104-116.	5.0	14
14	Dual-Specificity Phosphatase 1 (DUSP1) Has a Central Role in Redox Homeostasis and Inflammation in the Mouse Cochlea. Antioxidants, 2021, 10, 1351.	5.1	11
15	A Two-Photon Probe Based on Naphthalimide-Styrene Fluorophore for the <i>In Vivo</i> Tracking of Cellular Senescence. Analytical Chemistry, 2021, 93, 3052-3060.	6.5	29
16	Glucose 6â€P dehydrogenase delays the onset of frailty by protecting against muscle damage. Journal of Cachexia, Sarcopenia and Muscle, 2021, 12, 1879-1896.	7.3	9
17	InÂVivo Reprogramming Ameliorates Aging Features in Dentate Gyrus Cells and Improves Memory in Mice. Stem Cell Reports, 2020, 15, 1056-1066.	4.8	56
18	Diamond Blackfan anemia is mediated by hyperactive Nemo-like kinase. Nature Communications, 2020, 11, 3344.	12.8	10

#	Article	IF	CITATIONS
19	<i>G6PD</i> overexpression protects from oxidative stress and ageâ€related hearing loss. Aging Cell, 2020, 19, e13275.	6.7	37
20	Manipulating the Mediator complex to induce $na\tilde{A}$ ve pluripotency. Experimental Cell Research, 2020, 395, 112215.	2.6	2
21	Metformin-induced suppression of Nemo-like kinase improves erythropoiesis in preclinical models of Diamond–Blackfan anemia through induction of miR-26a. Experimental Hematology, 2020, 91, 65-77.	0.4	7
22	Transient exposure to miRâ€203 enhances the differentiation capacity of established pluripotent stem cells. EMBO Journal, 2020, 39, e104324.	7.8	16
23	Induction of Lysosome Membrane Permeabilization as a Therapeutic Strategy to Target Pancreatic Cancer Stem Cells. Cancers, 2020, 12, 1790.	3.7	7
24	Galactoâ€conjugation of Navitoclax as an efficient strategy to increase senolytic specificity and reduce platelet toxicity. Aging Cell, 2020, 19, e13142.	6.7	131
25	Preclinical antitumor efficacy of senescence-inducing chemotherapy combined with a nanoSenolytic. Journal of Controlled Release, 2020, 323, 624-634.	9.9	64
26	Global hyperactivation of enhancers stabilizes human and mouse naive pluripotency through inhibition of CDK8/19 Mediator kinases. Nature Cell Biology, 2020, 22, 1223-1238.	10.3	35
27	A humanized animal model of pulmonary fibrosis based on cellular senescence. , 2020, , .		0
28	Metformin Upregulates Mir-26a to Improve Erythropoiesis in Preclinical Models of Diamond Blackfan Anemia through Suppression of Nlk Expression. Blood, 2020, 136, 7-7.	1.4	0
29	Cellular Senescence: Defining a Path Forward. Cell, 2019, 179, 813-827.	28.9	1,551
30	Lysosomal trapping of palbociclib and its functional implications. Oncogene, 2019, 38, 3886-3902.	5.9	57
31	The chemistry of senescence. Nature Reviews Chemistry, 2019, 3, 426-441.	30.2	88
32	Identification and characterization of Cardiac Glycosides as senolytic compounds. Nature Communications, 2019, 10, 4731.	12.8	230
33	Naked mole rats can undergo developmental, oncogene-induced and DNA damage-induced cellular senescence. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 1801-1806.	7.1	67
34	The RNA Polymerase II Factor RPAP1 Is Critical for Mediator-Driven Transcription and Cell Identity. Cell Reports, 2018, 22, 396-410.	6.4	30
35	Senescence promotes inÂvivo reprogramming through p16 <scp>^{INK}</scp> ^{4a} and <scp>IL</scp> â€6. Aging Cell, 2018, 17, e12711.	6.7	133
36	Targeting senescence. Nature Medicine, 2018, 24, 1092-1094.	30.7	22

3

#	Article	IF	CITATIONS
37	AAV vector-mediated in vivo reprogramming into pluripotency. Nature Communications, 2018, 9, 2651.	12.8	43
38	A versatile drug delivery system targeting senescent cells. EMBO Molecular Medicine, 2018, 10, .	6.9	204
39	Sirt1 protects from Kâ€Rasâ€driven lung carcinogenesis. EMBO Reports, 2018, 19, .	4.5	21
40	Adult Sox2+ stem cell exhaustion in mice results in cellular senescence and premature aging. Aging Cell, 2018, 17, e12834.	6.7	24
41	TGF \hat{l}^2 inhibition restores a regenerative response in acute liver injury by suppressing paracrine senescence. Science Translational Medicine, 2018, 10, .	12.4	161
42	Pharmacological Inhibition of Nlk (Nemo-like Kinase) Rescues Erythropoietic Defects in Pre-Clinical Models of Diamond Blackfan Anemia. Blood, 2018, 132, 754-754.	1.4	0
43	p53 Modulates the Fate of Cardiac Progenitor Cells Ex Vivo and in the Diabetic Heart In Vivo. EBioMedicine, 2017, 16, 224-237.	6.1	9
44	Common Telomere Changes during InÂVivo Reprogramming and Early Stages of Tumorigenesis. Stem Cell Reports, 2017, 8, 460-475.	4.8	33
45	CtIP-Specific Roles during Cell Reprogramming Have Long-Term Consequences in the Survival and Fitness of Induced Pluripotent Stem Cells. Stem Cell Reports, 2017, 8, 432-445.	4.8	7
46	Young and Lean: Elimination of Senescent Cells Boosts Adaptive Thermogenesis. Cell Metabolism, 2017, 25, 226-228.	16.2	0
47	Analysis of the advantages of cis reporters in optimized <scp>FACSâ€G</scp> al. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2017, 91, 721-729.	1.5	4
48	Tools to eliminate senescent cells. Nature, 2017, 545, 294-295.	27.8	11
49	Robust, universal biomarker assay to detect senescent cells in biological specimens. Aging Cell, 2017, 16, 192-197.	6.7	179
50	An OFF–ON Two-Photon Fluorescent Probe for Tracking Cell Senescence <i>in Vivo</i> . Journal of the American Chemical Society, 2017, 139, 8808-8811.	13.7	138
51	î"133p53 represses p53-inducible senescence genes and enhances the generation of human induced pluripotent stem cells. Cell Death and Differentiation, 2017, 24, 1017-1028.	11.2	49
52	Understanding Aging. New England Journal of Medicine, 2017, 376, 1083-1085.	27.0	10
53	A Stat6/Pten Axis Links Regulatory T Cells with Adipose Tissue Function. Cell Metabolism, 2017, 26, 475-492.e7.	16.2	71
54	Correction: Retraction: Oncogenic activity of Cdc6 through repression of the INK4/ARF locus. Nature, 2017, 547, 246-246.	27.8	1

#	Article	IF	Citations
55	Abstract 922: Delta133p53 represses p53-inducible senescence genes and enhances the generation of human induced pluripotent stem cells., 2017,,.		0
56	Senescence and Cancer: In the Name of Immunosuppression. Cancer Cell, 2016, 30, 507-508.	16.8	12
57	Tissue damage and senescence provide critical signals for cellular reprogramming in vivo. Science, 2016, 354, .	12.6	466
58	G6PD protects from oxidative damage and improves healthspan in mice. Nature Communications, 2016, 7, 10894.	12.8	179
59	p21Cip1 plays a critical role in the physiological adaptation to fasting through activation of PPARα. Scientific Reports, 2016, 6, 34542.	3.3	12
60	NSD2 contributes to oncogenic RAS-driven transcription in lung cancer cells through long-range epigenetic activation. Scientific Reports, 2016, 6, 32952.	3.3	45
61	PTEN recruitment controls synaptic and cognitive function in Alzheimer's models. Nature Neuroscience, 2016, 19, 443-453.	14.8	118
62	Combined inhibition of DDR1 and Notch signaling is a therapeutic strategy for KRAS-driven lung adenocarcinoma. Nature Medicine, 2016, 22, 270-277.	30.7	150
63	Mitochondrial Damage Induces Senescence with a Twisted Arm. Cell Metabolism, 2016, 23, 229-230.	16.2	6
64	Stabilization of p21 by mTORC1/4E-BP1 predicts clinical outcome of head and neck cancers. Nature Communications, 2016, 7, 10438.	12.8	37
65	Unraveling the links between cancer and aging. Carcinogenesis, 2016, 37, 107-107.	2.8	31
66	PI3Kα inhibition reduces obesity in mice. Aging, 2016, 8, 2747-2753.	3.1	21
67	Troponin-I enhances and is required for oncogenic overgrowth. Oncotarget, 2016, 7, 52631-52642.	1.8	28
68	Increased gene dosage ofInk4/Arfandp53delays age-associated central nervous system functional decline. Aging Cell, 2015, 14, 710-714.	6.7	34
69	Partial Loss of Rpl11 in Adult Mice Recapitulates Diamond-Blackfan Anemia and Promotes Lymphomagenesis. Cell Reports, 2015, 13, 712-722.	6.4	64
70	Resveratrol treatment restores peripheral insulin sensitivity in diabetic mice in a sirt1â€independent manner. Molecular Nutrition and Food Research, 2015, 59, 1431-1442.	3.3	53
71	Targeting \hat{I}^3 -secretases protect against angiotensin II-induced cardiac hypertrophy. Journal of Hypertension, 2015, 33, 843-850.	0.5	9
72	NOTCH pathway inactivation promotes bladder cancer progression. Journal of Clinical Investigation, 2015, 125, 824-830.	8.2	86

#	Article	IF	CITATIONS
73	The pluripotency factor NANOG promotes the formation of squamous cell carcinomas. Scientific Reports, 2015, 5, 10205.	3.3	32
74	SIRT1 enhances glucose tolerance by potentiating brown adipose tissue function. Molecular Metabolism, 2015, 4, 118-131.	6.5	75
75	SHP2: a new target for proâ€senescence cancer therapies. EMBO Journal, 2015, 34, 1439-1441.	7.8	10
76	Activation of sirtuin 1 as therapy for the peroxisomal disease adrenoleukodystrophy. Cell Death and Differentiation, 2015, 22, 1742-1753.	11.2	27
77	Pharmacological Inhibition of PI3K Reduces Adiposity and Metabolic Syndrome in Obese Mice and Rhesus Monkeys. Cell Metabolism, 2015, 21, 558-570.	16.2	79
78	The InflammTORy Powers of Senescence. Trends in Cell Biology, 2015, 25, 634-636.	7.9	12
79	PTEN mediates Notch-dependent stalk cell arrest in angiogenesis. Nature Communications, 2015, 6, 7935.	12.8	86
80	Limiting replication stress during somatic cell reprogramming reduces genomic instability in induced pluripotent stem cells. Nature Communications, 2015, 6, 8036.	12.8	84
81	Transcriptional regulation of Sox2 by the retinoblastoma family of pocket proteins. Oncotarget, 2015, 6, 2992-3002.	1.8	14
82	Bladder cancer and the Notch pathway. Oncotarget, 2015, 6, 1346-1347.	1.8	5
83	The PTEN/NRF2 Axis Promotes Human Carcinogenesis. Antioxidants and Redox Signaling, 2014, 21, 2498-2514.	5.4	104
84	Senescence Helps Regeneration. Developmental Cell, 2014, 31, 671-672.	7.0	25
85	A Unified Nomenclature and Amino Acid Numbering for Human PTEN. Science Signaling, 2014, 7, pe15.	3.6	50
86	Exome sequencing of three cases of familial exceptional longevity. Aging Cell, 2014, 13, 1087-1090.	6.7	16
87	Non-genotoxic activation of p53 through the RPL11-dependent ribosomal stress pathway. Carcinogenesis, 2014, 35, 2822-2830.	2.8	25
88	SIRT1 controls liver regeneration by regulating bile acid metabolism through farnesoid X receptor and mammalian target of rapamycin signaling. Hepatology, 2014, 59, 1972-1983.	7.3	105
89	GLP-1 Agonism Stimulates Brown Adipose Tissue Thermogenesis and Browning Through Hypothalamic AMPK. Diabetes, 2014, 63, 3346-3358.	0.6	422
90	Cellular senescence: from physiology to pathology. Nature Reviews Molecular Cell Biology, 2014, 15, 482-496.	37.0	1,979

#	Article	IF	Citations
91	Lineage-restricted function of the pluripotency factor NANOG in stratified epithelia. Nature Communications, 2014, 5, 4226.	12.8	45
92	Reprogramming activity of NANOGP8, a NANOG family member widely expressed in cancer. Oncogene, 2014, 33, 2513-2519.	5.9	37
93	Epigenetic induction of the Ink4a/Arf locus prevents Schwann cell overproliferation during nerve regeneration and after tumorigenic challenge. Brain, 2013, 136, 2262-2278.	7.6	44
94	Programmed Cell Senescence during Mammalian Embryonic Development. Cell, 2013, 155, 1104-1118.	28.9	1,081
95	Reprogramming in vivo produces teratomas and iPS cells with totipotency features. Nature, 2013, 502, 340-345.	27.8	443
96	PTEN in cancer, metabolism, and aging. Trends in Endocrinology and Metabolism, 2013, 24, 184-189.	7.1	165
97	Increased dosage of <i>Ink4/Arf</i> protects against glucose intolerance and insulin resistance associated with aging. Aging Cell, 2013, 12, 102-111.	6.7	30
98	Sirt4: The Glutamine Gatekeeper. Cancer Cell, 2013, 23, 427-428.	16.8	30
99	The Hallmarks of Aging. Cell, 2013, 153, 1194-1217.	28.9	10,992
100	Ghrelin Requires p53 to Stimulate Lipid Storage in Fat and Liver. Endocrinology, 2013, 154, 3671-3679.	2.8	56
101	Sirtuin-1 Regulates Acinar-to-Ductal Metaplasia and Supports Cancer Cell Viability in Pancreatic Cancer. Cancer Research, 2013, 73, 2357-2367.	0.9	59
102	SIRT1 promotes thyroid carcinogenesis driven by PTEN deficiency. Oncogene, 2013, 32, 4052-4056.	5.9	70
103	"Super p53―Mice Display Retinal Astroglial Changes. PLoS ONE, 2013, 8, e65446.	2.5	11
104	Abstract B45: A cell-based screening to identify nucleolar disruptors in cancer cells., 2013,,.		0
105	Cellular Senescence Limits Regenerative Capacity and Allograft Survival. Journal of the American Society of Nephrology: JASN, 2012, 23, 1467-1473.	6.1	143
106	Ribosomal stress induces L11- and p53-dependent apoptosis in mouse pluripotent stem cells. Cell Cycle, 2012, 11, 503-510.	2.6	32
107	Metformin and reprogramming into iPSCs. Cell Cycle, 2012, 11, 1058-1058.	2.6	2
108	Regulation of the tumor suppressor PTEN by SUMO. Cell Death and Disease, 2012, 3, e393-e393.	6.3	68

#	Article	IF	Citations
109	EMT and induction of miR-21 mediate metastasis development in Trp53-deficient tumours. Scientific Reports, 2012, 2, 434.	3.3	74
110	Dissecting the role of mTOR complexes in cellular senescence. Cell Cycle, 2012, 11, 2231-2232.	2.6	29
111	p27Kip1 Directly Represses Sox2 during Embryonic Stem Cell Differentiation. Cell Stem Cell, 2012, 11, 845-852.	11.1	134
112	Increased gene dosage of the Ink4/Arf locus does not attenuate atherosclerosis development in hypercholesterolaemic mice. Atherosclerosis, 2012, 221, 98-105.	0.8	13
113	Therapeutic Effect of \hat{I}^3 -Secretase Inhibition in KrasG12V-Driven Non-Small Cell Lung Carcinoma by Derepression of DUSP1 and Inhibition of ERK. Cancer Cell, 2012, 22, 222-234.	16.8	108
114	Oncogenicity of the Developmental Transcription Factor Sox9. Cancer Research, 2012, 72, 1301-1315.	0.9	180
115	Pten Positively Regulates Brown Adipose Function, Energy Expenditure, and Longevity. Cell Metabolism, 2012, 15, 382-394.	16.2	308
116	Specific lipofuscin staining as a novel biomarker to detect replicative and stress-induced senescence. A method applicable in cryo-preserved and archival tissues. Aging, 2012, 5, 37-50.	3.1	258
117	Increased dosage of tumor suppressors limits the tumorigenicity of iPS cells without affecting their pluripotency. Aging Cell, 2012, 11, 41-50.	6.7	51
118	In Vivo Inhibition of c-MYC in Myeloid Cells Impairs Tumor-Associated Macrophage Maturation and Pro-Tumoral Activities. PLoS ONE, 2012, 7, e45399.	2.5	46
119	Notching up a new therapeutic strategy for Non-Small Cell Lung Carcinoma (NSCLC). Oncotarget, 2012, 3, 917-918.	1.8	6
120	Free [NADH]/[NAD+] regulates sirtuin expression. Archives of Biochemistry and Biophysics, 2011, 512, 24-29.	3.0	43
121	Final act of senescence. Nature, 2011, 479, 481-482.	27.8	22
122	The stress kinase MKK7 couples oncogenic stress to p53 stability and tumor suppression. Nature Genetics, 2011, 43, 212-219.	21.4	96
123	Genome-wide CTCF distribution in vertebrates defines equivalent sites that aid the identification of disease-associated genes. Nature Structural and Molecular Biology, 2011, 18, 708-714.	8.2	95
124	Genomic instability in iPS: time for a break. EMBO Journal, 2011, 30, 991-993.	7.8	50
125	SIRT1 stabilizes PML promoting its sumoylation. Cell Death and Differentiation, 2011, 18, 72-79.	11.2	49
126	Pancreatitis-Induced Inflammation Contributes to Pancreatic Cancer by Inhibiting Oncogene-Induced Senescence. Cancer Cell, 2011, 19, 728-739.	16.8	437

#	Article	IF	CITATIONS
127	Acetylation is indispensable for p53 antiviral activity. Cell Cycle, 2011, 10, 3701-3705.	2.6	41
128	Epigenetic regulation of <i>Nanog </i> expression by Ezh2 in pluripotent stem cells. Cell Cycle, 2011, 10, 1488-1498.	2.6	52
129	Limited role of Sirt1 in cancer protection by dietary restriction. Cell Cycle, 2011, 10, 2215-2217.	2.6	20
130	A minimally invasive assay for individual assessment of the ATM/CHEK2/p53 pathway activity. Cell Cycle, 2011, 10, $1152-1161$.	2.6	36
131	Imaging Cancer in Mice by PET, CT, and Combined PETâ€CT. Current Protocols in Mouse Biology, 2011, 1, 85-103.	1.2	7
132	Induced Pluripotency: Generation of iPS Cells from Mouse Embryonic Fibroblasts. Springer Protocols, 2011, , 477-500.	0.3	1
133	Abstract SY11-03: Sirt1 transgenic and cancer models. , 2011, , .		1
134	Sirtuin 1 regulation of developmental genes during differentiation of stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 13736-13741.	7.1	154
135	The TRIP from ULF to ARF. Cancer Cell, 2010, 17, 317-318.	16.8	17
136	A lower bar for senescence. Nature, 2010, 464, 363-364.	27.8	33
137	Senescence in tumours: evidence from mice and humans. Nature Reviews Cancer, 2010, 10, 51-57.	28.4	947
138	SIRT1: recent lessons from mouse models. Nature Reviews Cancer, 2010, 10, 819-823.	28.4	246
139	79: WNT16B, a new biomarker of senescent cells in vitro and in vivo, is necessary for the p53-dependent activation of p21WAF1 in cellular senescence. Bulletin Du Cancer, 2010, 97, S67.	1.6	0
140	Dietary Restriction: Standing Up for Sirtuins. Science, 2010, 329, 1012-1013.	12.6	63
141	SIRT1 contributes to telomere maintenance and augments global homologous recombination. Journal of Cell Biology, 2010, 191, 1299-1313.	5.2	220
142	Shifting senescence into quiescence by turning up p53. Cell Cycle, 2010, 9, 4256-4257.	2.6	37
143	Depletion of ribosomal protein L37 occurs in response to DNA damage and activates p53 through the L11/MDM2 pathway. Cell Cycle, 2010, 9, 4005-4012.	2.6	69
144	miR-33-mediated downregulation of p53 controls hematopoietic stem cell self-renewal. Cell Cycle, 2010, 9, 3297-3305.	2.6	102

#	Article	IF	Citations
145	Sirt1 improves healthy ageing and protects from metabolic syndrome-associated cancer. Nature Communications, $2010, 1, 3$.	12.8	539
146	p19ARFDeficiency Reduces Macrophage and Vascular Smooth Muscle Cell Apoptosis and Aggravates Atherosclerosis. Journal of the American College of Cardiology, 2010, 55, 2258-2268.	2.8	86
147	Normal Proliferation and Tumorigenesis but Impaired Pancreatic Function in Mice Lacking the Cell Cycle Regulator Sei1. PLoS ONE, 2010, 5, e8744.	2.5	10
148	SIRT1 Undergoes Alternative Splicing in a Novel Auto-Regulatory Loop with p53. PLoS ONE, 2010, 5, e13502.	2.5	42
149	Impact papers on aging in 2009. Aging, 2010, 2, 111-121.	3.1	35
150	Impact of Sirt1 on mammalian aging. Aging, 2010, 2, 315-316.	3.1	33
151	Limited Role of Murine ATM in Oncogene-Induced Senescence and p53-Dependent Tumor Suppression. PLoS ONE, 2009, 4, e5475.	2.5	50
152	Cold-Inducible RNA-Binding Protein Bypasses Replicative Senescence in Primary Cells through Extracellular Signal-Regulated Kinase 1 and 2 Activation. Molecular and Cellular Biology, 2009, 29, 1855-1868.	2.3	69
153	WNT16B Is a New Marker of Cellular Senescence That Regulates p53 Activity and the Phosphoinositide 3-Kinase/AKT Pathway. Cancer Research, 2009, 69, 9183-9191.	0.9	91
154	Simultaneous inactivation of Par-4 and PTEN in vivo leads to synergistic NF-l̂ºB activation and invasive prostate carcinoma. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 12962-12967.	7.1	40
155	Nephrin Deficiency Activates NF-κB and Promotes Glomerular Injury. Journal of the American Society of Nephrology: JASN, 2009, 20, 1733-1743.	6.1	54
156	MSK2 Inhibits p53 Activity in the Absence of Stress. Science Signaling, 2009, 2, ra57.	3.6	28
157	Rplp1 bypasses replicative senescence and contributes to transformation. Experimental Cell Research, 2009, 315, 1372-1383.	2.6	33
158	Regulation of macrophage activation and septic shock susceptibility <i>via</i> p21(WAF1/CIP1). European Journal of Immunology, 2009, 39, 810-819.	2.9	58
159	A p53-mediated DNA damage response limits reprogramming to ensure iPS cell genomic integrity. Nature, 2009, 460, 1149-1153.	27.8	959
160	The Ink4/Arf locus is a barrier for iPS cell reprogramming. Nature, 2009, 460, 1136-1139.	27.8	897
161	Salermide, a Sirtuin inhibitor with a strong cancer-specific proapoptotic effect. Oncogene, 2009, 28, 781-791.	5.9	244
162	Histone macroH2A isoforms predict the risk of lung cancer recurrence. Oncogene, 2009, 28, 3423-3428.	5.9	165

#	Article	IF	Citations
163	Antiâ€aging activity of the <i>Ink4/Arf</i> locus. Aging Cell, 2009, 8, 152-161.	6.7	92
164	Telomeres Acquire Embryonic Stem Cell Characteristics in Induced Pluripotent Stem Cells. Cell Stem Cell, 2009, 4, 141-154.	11.1	450
165	Polycomb Mediated Epigenetic Silencing and Replication Timing at the INK4a/ARF Locus during Senescence. PLoS ONE, 2009, 4, e5622.	2.5	117
166	Par-4 inhibits Akt and suppresses Ras-induced lung tumorigenesis. EMBO Journal, 2008, 27, 2181-2193.	7.8	77
167	A mammalian microRNA cluster controls DNA methylation and telomere recombination via Rbl2-dependent regulation of DNA methyltransferases. Nature Structural and Molecular Biology, 2008, 15, 268-279.	8.2	348
168	Sirt1 protects against high-fat diet-induced metabolic damage. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 9793-9798.	7.1	841
169	Telomerase Reverse Transcriptase Delays Aging in Cancer-Resistant Mice. Cell, 2008, 135, 609-622.	28.9	396
170	Mechanistic principles of chromatin remodeling guided by siRNAs and miRNAs. Cell Cycle, 2008, 7, 2601-2608.	2.6	127
171	The Arf/p53 Pathway in Cancer and Aging. Cancer Research, 2008, 68, 6031-6034.	0.9	121
172	Genomic Profiling of Circulating Plasma RNA for the Analysis of Cancer. Clinical Chemistry, 2007, 53, 1860-1863.	3.2	32
173	p53: Guardian of the Genome and Policeman of the Oncogenes. Cell Cycle, 2007, 6, 1006-1010.	2.6	440
174	A new mouse model to explore the initiation, progression, and therapy of BRAFV600E-induced lung tumors. Genes and Development, 2007, 21, 379-384.	5.9	427
175	Increased p53 gene dosage reduces neointimal thickening induced by mechanical injury but has no effect on native atherosclerosis. Cardiovascular Research, 2007, 75, 803-812.	3.8	37
176	Inactivation of the Candidate Tumor Suppressor Par-4 in Endometrial Cancer. Cancer Research, 2007, 67, 1927-1934.	0.9	100
177	Induction of p53-Dependent Senescence by the MDM2 Antagonist Nutlin-3a in Mouse Cells of Fibroblast Origin. Cancer Research, 2007, 67, 7350-7357.	0.9	116
178	Ing1 Mediates p53 Accumulation and Chromatin Modification in Response to Oncogenic Stress. Journal of Biological Chemistry, 2007, 282, 31060-31067.	3.4	24
179	Effect of presenilins in the apoptosis of thymocytes and homeostasis of CD8+ T cells. Blood, 2007, 110, 3218-3225.	1.4	17
180	Cellular Senescence in Cancer and Aging. Cell, 2007, 130, 223-233.	28.9	1,484

#	Article	IF	CITATIONS
181	Cancer Regression by Senescence. New England Journal of Medicine, 2007, 356, 1996-1997.	27.0	40
182	Genetic dissection of the role of p21Cip1/Waf1 in p53-mediated tumour suppression. Oncogene, 2007, 26, 1645-1649.	5.9	36
183	Normal cellular senescence and cancer susceptibility in mice genetically deficient in Ras-induced senescence-1 (Ris1). Oncogene, 2007, 26, 1673-1680.	5.9	4
184	Cancer and ageing: convergent and divergent mechanisms. Nature Reviews Molecular Cell Biology, 2007, 8, 715-722.	37.0	174
185	Delayed ageing through damage protection by the Arf/p53 pathway. Nature, 2007, 448, 375-379.	27.8	439
186	The common biology of cancer and ageing. Nature, 2007, 448, 767-774.	27.8	903
187	Mature-onset obesity and insulin resistance in mice deficient in the signaling adapter p62. Cell Metabolism, 2006, 3, 211-222.	16.2	262
188	Policing of oncogene activity by p53. Nature, 2006, 443, 159-159.	27.8	107
189	The power and the promise of oncogene-induced senescence markers. Nature Reviews Cancer, 2006, 6, 472-476.	28.4	372
190	Oncogenic activity of Cdc6 through repression of the INK4/ARF locus. Nature, 2006, 440, 702-706.	27.8	170
191	Antiviral action of the tumor suppressor ARF. EMBO Journal, 2006, 25, 4284-4292.	7.8	43
192	Increased p53 activity does not accelerate telomereâ€driven ageing. EMBO Reports, 2006, 7, 546-552.	4. 5	103
193	Tumorigenic activity of p21Waf1/Cip1 in thymic lymphoma. Oncogene, 2006, 25, 4128-4132.	5.9	72
194	A functional link between the tumour suppressors ARF and p33ING1. Oncogene, 2006, 25, 5173-5179.	5. 9	36
195	Analysis of the candidate tumor suppressor Ris-1 in primary human breast carcinomas. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2006, 594, 78-85.	1.0	14
196	A High-Throughput Loss-of-Function Screening Identifies Novel p53 Regulators. Cell Cycle, 2006, 5, 1880-1885.	2.6	52
197	A New Mechanism of Inactivation of the INK4/ARF Locus. Cell Cycle, 2006, 5, 1382-1384.	2.6	45
198	Specific Contribution of p19ARF to Nitric Oxide-Dependent Apoptosis. Journal of Immunology, 2006, 177, 3327-3336.	0.8	42

#	Article	IF	Citations
199	Tumourâ€suppression activity of the proapoptotic regulator Par4. EMBO Reports, 2005, 6, 577-583.	4.5	99
200	Resistance to viral infection of super p53 mice. Oncogene, 2005, 24, 3059-3062.	5.9	66
201	Senescence in premalignant tumours. Nature, 2005, 436, 642-642.	27.8	1,280
202	A strategy to study tyrosinase transgenes in mouse melanocytes. BMC Cell Biology, 2005, 6, 18.	3.0	14
203	Growth Inhibition by the Tumor Suppressor p33ING1 in Immortalized and Primary Cells: Involvement of Two Silencing Domains and Effect of Ras. Molecular and Cellular Biology, 2005, 25, 422-431.	2.3	48
204	p73Î ² -Mediated Apoptosis Requires p57kip2 Induction and IEX-1 Inhibition. Cancer Research, 2005, 65, 2186-2192.	0.9	39
205	The Senescent Side of Tumor Suppression. Cell Cycle, 2005, 4, 1722-1724.	2.6	71
206	Regulation of the INK4a/ARF Locus by Histone Deacetylase Inhibitors. Journal of Biological Chemistry, 2005, 280, 42433-42441.	3.4	32
207	Inactivation of imprinted genes induced by cellular stress and tumorigenesis. Cancer Research, 2005, 65, 26-33.	0.9	31
208	Increased gene dosage of Ink4a/Arf results in cancer resistance and normal aging. Genes and Development, 2004, 18, 2736-2746.	5.9	123
209	Crosstalk between PKCζ and the IL4/Stat6 pathway during T-cell-mediated hepatitis. EMBO Journal, 2004, 23, 4595-4605.	7.8	53
210	The absence of p53 is critical for the induction of apoptosis by 5-aza-2′-deoxycytidine. Oncogene, 2004, 23, 735-743.	5.9	73
211	Different cooperating effect of p21 or p27 deficiency in combination with INK4a/ARF deletion in mice. Oncogene, 2004, 23, 8231-8237.	5.9	36
212	The Atypical PKC-Interacting Protein p62 Is an Important Mediator of RANK-Activated Osteoclastogenesis. Developmental Cell, 2004, 6, 303-309.	7.0	286
213	Tumor induction by an endogenous K-ras oncogene is highly dependent on cellular context. Cancer Cell, 2003, 4, 111-120.	16.8	518
214	Genetic inactivation of Par4 results in hyperactivation of NFâ€PB and impairment of JNK and p38. EMBO Reports, 2003, 4, 307-312.	4.5	58
215	Regulation of mature T lymphocyte proliferation and differentiation by Par-4. EMBO Journal, 2003, 22, 4689-4698.	7.8	44
216	Engineering cancer resistance in mice. Carcinogenesis, 2003, 24, 817-826.	2.8	17

#	Article	IF	CITATIONS
217	Proliferation: the Cell Cycle. Advances in Experimental Medicine and Biology, 2003, 532, 13-17.	1.6	6
218	Identification of a Candidate Tumor-Suppressor Gene Specifically Activated during Ras-Induced Senescence. Experimental Cell Research, 2002, 273, 127-137.	2.6	58
219	Tumor Suppressor p53 Mediates Apoptotic Cell Death Triggered by Cyclosporin A. Journal of Biological Chemistry, 2002, 277, 14102-14108.	3.4	44
220	Activation of ARF by oncogenic stress in mouse fibroblasts is independent of E2F1 and E2F2. Oncogene, 2002, 21, 2939-2947.	5.9	32
221	Activation of cyclin D1-kinase in murine fibroblasts lacking both p21Cip1 and p27Kip1. Oncogene, 2002, 21, 8067-8074.	5.9	77
222	The p21Cip1 protein, a cyclin inhibitor, regulates the levels and the intracellular localization of CDC25A in mice regenerating livers. Hepatology, 2002, 35, 1063-1071.	7.3	19
223	'Super p53' mice exhibit enhanced DNA damage response, are tumor resistant and age normally. EMBO Journal, 2002, 21, 6225-6235.	7.8	495
224	Activation of ARF by oncogenic stress in mouse fibroblasts is independent of E2F1 and E2F2. Oncogene, 2002, 21, 2939-2947.	5.9	2
225	Induction of senescence by oncogenic ras. Methods in Enzymology, 2001, 333, 247-256.	1.0	62
226	Identification of the gene immediately downstream of the murine INK4a/ARF locus. Experimental Gerontology, 2001, 36, 1289-1302.	2.8	6
227	Putting the stress on senescence. Current Opinion in Cell Biology, 2001, 13, 748-753.	5.4	387
228	The ink4a/arf Tumor Suppressors Cooperate with p21 in the Processes of Mouse Epidermal Differentiation, Senescence, and Carcinogenesis. Journal of Biological Chemistry, 2001, 276, 44203-44211.	3.4	46
229	IFNalpha 2b induces apoptosis and proteasome-mediated degradation of p27Kip1 in a human lung cancer cell line. Oncology Reports, 2001, 8, 425-9.	2.6	8
230	Tumor susceptibility of p21(Waf1/Cip1)-deficient mice. Cancer Research, 2001, 61, 6234-8.	0.9	275
231	The cell cycle inhibitor p21 controls T-cell proliferation and sex-linked lupus development. Nature Medicine, 2000, 6, 171-176.	30.7	189
232	Tumor suppressors and oncogenes in cellular senescenceâ ⁺ †. Experimental Gerontology, 2000, 35, 317-329.	2.8	344
233	Networks of tumor suppressors. EMBO Reports, 2000, 1, 115-119.	4.5	4
234	Inhibition of the Phosphoinositide 3-Kinase Pathway Induces a Senescence-like Arrest Mediated by p27Kip1. Journal of Biological Chemistry, 2000, 275, 21960-21968.	3.4	231

#	Article	IF	Citations
235	The INK4a/ARF locus in murine tumorigenesis. Carcinogenesis, 2000, 21, 865-869.	2.8	92
236	The cell cycle and why is it important for oncology. , 2000, 2, 1-2.		0
237	Murine fibroblasts lacking p21 undergo senescence and are resistant to transformation by oncogenic Ras. Oncogene, 1999, 18, 4974-4982.	5.9	189
238	The downregulation of the pro-apoptotic protein Par-4 is critical for Ras-induced survival and tumor progression. EMBO Journal, 1999, 18, 6362-6369.	7.8	108
239	Mouse p73 gene maps to the distal part of chromosome 4 and might be involved in the progression of gamma-radiation-induced T-cell lymphomas. Cancer Research, 1999, 59, 2068-71.	0.9	25
240	Crystal structure of the complex of the cyclin D-dependent kinase Cdk6 bound to the cell-cycle inhibitor p19INK4d. Nature, 1998, 396, 390-390.	27.8	0
241	p19ARF links the tumour suppressor p53 to Ras. Nature, 1998, 395, 125-126.	27.8	600
242	Crystal structure of the complex of the cyclin D-dependent kinase Cdk6 bound to the cell-cycle inhibitor p19INK4d. Nature, 1998, 395, 244-250.	27.8	199
243	Premature senescence involving p53 and p16 is activated in response to constitutive MEK/MAPK mitogenic signaling. Genes and Development, 1998, 12, 3008-3019.	5.9	806
244	The Tumor Suppressor Protein p16INK4a. Experimental Cell Research, 1997, 237, 7-13.	2.6	292
245	Oncogenic ras Provokes Premature Cell Senescence Associated with Accumulation of p53 and p16INK4a. Cell, 1997, 88, 593-602.	28.9	4,480
246	Inactivation of the cyclin-dependent kinase inhibitor p15INK4b by deletion and de novo methylation with independence of p16INK4a alterations in murine primary T-cell lymphomas. Oncogene, 1997, 14, 1361-1370.	5.9	72
247	Analysis of p16INK4aand Its Interaction with CDK4. Biochemical and Biophysical Research Communications, 1996, 218, 254-259.	2.1	30
248	Role of the INK4a Locus in Tumor Suppression and Cell Mortality. Cell, 1996, 85, 27-37.	28.9	1,512
249	p53-dependent association between cyclin G and the B' subunit of protein phosphatase 2A. Molecular and Cellular Biology, 1996, 16, 6593-6602.	2.3	102
250	Suppression of growth in vitro and tumorigenicity in vivo of human carcinoma cell lines by transfectedp16INK4., 1996, 16, 53-60.		32
251	Activation of Replication Origins in i-29-related Phages Requires the Recognition of Initiation Proteins to Specific Nucleoprotein Complexes. Journal of Biological Chemistry, 1996, 271, 31000-31007.	3.4	28
252	Inhibition of Ras-Induced Proliferation and Cellular Transformation by p16 ^{INK4} . Science, 1995, 267, 249-252.	12.6	406

#	Article	IF	CITATIONS
253	Mutations associated with familial melanoma impair p16INK4 function. Nature Genetics, 1995, 10, 114-116.	21.4	273
254	Proteinâ€"nucleic acid interactions in bacteriophageφ29 DNA replication. FEMS Microbiology Reviews, 1995, 17, 73-82.	8.6	11
255	Deletion of the p16 and p15 Genes in Human Bladder Tumors. Journal of the National Cancer Institute, 1995, 87, 1524-1529.	6.3	175
256	A p16INK4a-insensitive CDK4 mutant targeted by cytolytic T lymphocytes in a human melanoma. Science, 1995, 269, 1281-1284.	12.6	1,102
257	Cloning and characterization of murine p16INK4a and p15INK4b genes. Oncogene, 1995, 11, 635-45.	5.9	176
258	Association of rat p15INK4B/p16INK4 deletions with monosomy 5 in kidney epithelial cell lines but not primary renal tumors. Cancer Research, 1995, 55, 1607-12.	0.9	23
259	Mutational effects on the p16INK4a tumor suppressor protein. Cancer Research, 1995, 55, 2503-6.	0.9	77
260	Mutations in the p16INK4/MTS1/CDKN2, p15INK4B/MTS2, and p18 genes in primary and metastatic lung cancer. Cancer Research, 1995, 55, 1448-51.	0.9	168
261	DNA structure in the nucleoprotein complex that activates replication of phage \tilde{A} /29. Biophysical Chemistry, 1994, 50, 183-189.	2.8	4
262	Phage Ã~29 protein p6: A viral histone-like protein. Biochimie, 1994, 76, 981-991.	2.6	29
263	Mutations and altered expression of p16INK4 in human cancer Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 11045-11049.	7.1	499
264	p16 INK4 Mutations and Altered Expression in Human Tumors and Cell Lines. Cold Spring Harbor Symposia on Quantitative Biology, 1994, 59, 49-57.	1.1	22
265	A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature, 1993, 366, 704-707.	27.8	3,425
266	Superhelical Path of the DNA in the Nucleoprotein Complex that Activates the Initiation of Phage φ29 DNA Replication. Journal of Molecular Biology, 1993, 230, 248-259.	4.2	48
267	Multimeric complexes formed by DNA-binding proteins of low sequence specificity. Trends in Biochemical Sciences, 1993, 18, 202-206.	7.5	41
268	DNA conformational change induced by the bacteriophage $\hat{l}^{\dagger}_{l}29$ connector. Nucleic Acids Research, 1992, 20, 5549-5554.	14.5	15
269	Protein-primed Replication of Bacteriophage $ ilde{A}^2$ 29 DNA. , 1992, , 295-306.		1
270	Transcription regulation in Bacillus subtilis phage $\hat{l} 29$. Research in Microbiology, 1991, 142, 771-777.	2.1	2

#	Article	IF	CITATIONS
271	Transcription activation at a distance by phage φ29 protein p4. Journal of Molecular Biology, 1991, 219, 403-414.	4.2	22
272	A novel nucleoprotein complex at a replication origin. Science, 1990, 248, 1012-1016.	12.6	82
273	Characterization of a DNA binding protein of bacteriophage PRD1 involved in DNA replication. Nucleic Acids Research, 1990, 18, 6553-6557.	14.5	23
274	Signals at the bacteriophage phi 29 DNA replication origins required for protein p6 binding and activity EMBO Journal, 1989, 8, 1879-1885.	7.8	54
275	Signals at the bacteriophage phi 29 DNA replication origins required for protein p6 binding and activity. EMBO Journal, 1989, 8, 1879-85.	7.8	26
276	Protein-primed replication of bacteriophage $\hat{l} 29$ DNA. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1988, 951, 419-424.	2.4	7
277	Interaction of the bacteriophage phi 29 protein p6 with double-stranded DNA Proceedings of the National Academy of Sciences of the United States of America, 1988, 85, 314-318.	7.1	53
278	Glaucoma Genetics – Regulation of Cell Surviving and Death in the Retina. , 0, , .		2