Paul J Vardanega

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1042203/publications.pdf

Version: 2024-02-01

394286 377752 1,392 81 19 34 citations g-index h-index papers 92 92 92 1011 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Stiffness of Clays and Silts: Normalizing Shear Modulus and Shear Strain. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2013, 139, 1575-1589.	1.5	176
2	The plastic limit of clays. Geotechnique, 2013, 63, 435-440.	2,2	101
3	A sand-rubber deformable granular layer as a low-cost seismic isolation strategy in developing countries: Experimental investigation. Soil Dynamics and Earthquake Engineering, 2019, 125, 105731.	1.9	91
4	The undrained strength $\hat{a} \in \hat{l}$ liquidity index relationship. Canadian Geotechnical Journal, 2014, 51, 1073-1086.	1.4	88
5	Categories of SHM Deployments: Technologies and Capabilities. Journal of Bridge Engineering, 2015, 20,	1.4	81
6	Use of fall cones to determine Atterberg limits: a review. Geotechnique, 2018, 68, 843-856.	2.2	74
7	Strength mobilization in clays and silts. Canadian Geotechnical Journal, 2011, 48, 1485-1503.	1.4	55
8	Analysis of Fiber-Optic Strain-Monitoring Data from a Prestressed Concrete Bridge. Journal of Bridge Engineering, 2017, 22, .	1.4	44
9	State of the Art: Permeability of Asphalt Concrete. Journal of Materials in Civil Engineering, 2014, 26, 54-64.	1.3	41
10	Analysis of Structural Health Monitoring Data from Hammersmith Flyover. Journal of Bridge Engineering, 2014, 19, .	1.4	38
11	Laboratory measurement of strength mobilisation in kaolin: link to stress history. Geotechnique Letters, 2012, 2, 9-15.	0.6	34
12	Results of monitoring at the British Library excavation. Proceedings of the Institution of Civil Engineers: Geotechnical Engineering, 2014, 167, 99-116.	0.9	30
13	Analysis of Asphalt Concrete Permeability Data Using Representative Pore Size. Journal of Materials in Civil Engineering, 2011, 23, 169-176.	1.3	26
14	Mutual Shaping in Swarm Robotics: User Studies in Fire and Rescue, Storage Organization, and Bridge Inspection. Frontiers in Robotics and Al, 2020, 7, 53.	2.0	26
15	Bored pile design in stiff clay II: mechanisms and uncertainty. Proceedings of the Institution of Civil Engineers: Geotechnical Engineering, 2012, 165, 233-246.	0.9	25
16	Ground movements due to deep excavations in Shanghai: Design charts. Frontiers of Structural and Civil Engineering, 2014, 8, 201-236.	1.2	23
17	Permeability assessment of some granular mixtures. Geotechnique, 2019, 69, 646-654.	2.2	22
18	Fatigue life assessment of large scale T-jointed steel truss bridge components. Journal of Constructional Steel Research, 2017, 133, 499-509.	1.7	20

#	Article	IF	Citations
19	Urbanisation and landslides: hazard drivers and better practices. Proceedings of the Institution of Civil Engineers: Civil Engineering, 2016, 169, 137-144.	0.3	19
20	Bored pile design in stiff clay I: codes of practice. Proceedings of the Institution of Civil Engineers: Geotechnical Engineering, 2012, 165, 213-232.	0.9	15
21	Design of Geostructural Systems. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 2016, 2, 04015017.	1.1	15
22	Use of fall-cone flow index for soil classification: a new plasticity chart. Geotechnique, 2022, 72, 610-617.	2.2	15
23	The SAFER geodatabase for the Kathmandu valley: Bayesian kriging for data-scarce regions. Earthquake Spectra, 2021, 37, 1108-1126.	1.6	14
24	Stiffness of Clays and Silts: Modeling Considerations. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2014, 140, 06014004.	1.5	13
25	Assessing the potential value of bridge monitoring systems. Proceedings of the Institution of Civil Engineers: Bridge Engineering, 2016, 169, 126-138.	0.3	13
26	The plastic limit of clays. Geotechnique, 2014, 64, 584-586.	2.2	12
27	Influence of Bar Diameter on Low-Cycle Fatigue Degradation of Reinforcing Bars. Journal of Materials in Civil Engineering, 2019, 31, .	1.3	12
28	The SAFER geodatabase for the Kathmandu Valley: Geotechnical and geological variability. Earthquake Spectra, 2020, 36, 1549-1569.	1.6	12
29	Fundamental basis of single-point liquid limit measurement approaches. Applied Clay Science, 2014, 102, 8-14.	2.6	11
30	Investigation of the Atterberg limits and undrained fall-cone shear strength variation with water content of some peat soils. International Journal of Pavement Research and Technology, 2019, 12, 131-138.	1.3	11
31	Using data to explore trends in bridge performance. Proceedings of the Institution of Civil Engineers - Smart Infrastructure and Construction, 2018, 171, 14-28.	1.1	10
32	Analysis of design choices for a slope stability scenario in the humid tropics. Proceedings of the Institution of Civil Engineers: Engineering Sustainability, 2018, 171, 37-52.	0.4	10
33	Classifying and characterising fineâ€grained soils using fall cones. Ce/Papers, 2018, 2, 821-826.	0.1	10
34	A database of saturated hydraulic conductivity of fine-grained soils: probability density functions. Georisk, 2019, 13, 255-261.	2.6	10
35	Minding the geotechnical data gap: appraisal of the variability of key soil parameters for slope stability modelling in Saint Lucia. Bulletin of Engineering Geology and the Environment, 2019, 78, 4851-4864.	1.6	10
36	Quantifying Uncertainty in Visual Inspection Data. , 2018, , 2252-2259.		10

#	Article	IF	CITATIONS
37	Discussion of "Water Content Ratio: An Effective Substitute for Liquidity Index for Prediction of Shear Strength of Clays―by Beshy Kuriakose, Benny Mathews Abraham, A. Sridharan & Babu T. Jose. Geotechnical and Geological Engineering, 2017, 35, 3039-3044.	0.8	8
38	Use of fall cones to determine Atterberg limits: a review. Geotechnique, 2020, 70, 647-651.	2.2	8
39	Use of fall cones to determine Atterberg limits: a review. Geotechnique, 2020, 70, 652-654.	2.2	8
40	Liquefaction potential for the Kathmandu Valley, Nepal: a sensitivity study. Bulletin of Earthquake Engineering, 2022, 20, 25-51.	2.3	8
41	Discussion of "Mohajerani method: Tool for determining the liquid limit of soils using fall cone test results with strong correlation with the Casagrande testâ€by E. Hrubesova, B. Lunackova and M. Mohyla [Engineering Geology 278 (2020) 105852]. Engineering Geology, 2022, 302, 106623.	2.9	8
42	Discussion of "Re-Examination of Undrained Strength at Atterberg Limits Water Contents―by H.B. Nagaraj, A. Sridharan & H.M. Mallikarjuna. Geotechnical and Geological Engineering, 2012, 30, 1389-1391.	0.8	7
43	Assessing the suitability of bridge-scour-monitoring devices. Proceedings of the Institution of Civil Engineers: Forensic Engineering, 2021, 174, 105-117.	0.5	7
44	Ranking Binder Creep Performance Using the ARRB Elastometer. Journal of Materials in Civil Engineering, 2010, 22, 451-459.	1.3	6
45	Some Recent Developments in the Determination of the Atterberg Limits. , 2014, , .		6
46	Discussion of  Factors influencing undrained strength of fine-grained soils at high water contents' by H. B. Nagaraj, M.V. Sravan and B. S. Deepa. Geomechanics and Geoengineering, 2021, 16, 417-419.	0.9	6
47	Discussion: Remoulded shear strength at plastic and semi-solid states. Proceedings of the Institution of Civil Engineers: Geotechnical Engineering, 2013, 166, 515-517.	0.9	5
48	Rapid deployment of a WSN on the Clifton Suspension Bridge, UK. Proceedings of the Institution of Civil Engineers - Smart Infrastructure and Construction, 2017, 170, 59-71.	1.1	5
49	Assessing the hydraulic conductivity of road paving materials using representative pore size and grading entropy. Ce/Papers, 2018, 2, 871-876.	0.1	5
50	Geodatabases to improve geotechnical design and modelling. Ce/Papers, 2018, 2, 401-406.	0.1	5
51	Permeability assessment of some granular mixtures. Geotechnique, 2020, 70, 845-847.	2.2	5
52	Parameter variability of undrained shear strength and strain using a database of reconstituted soil tests. Canadian Geotechnical Journal, 2020, 57, 1247-1255.	1.4	5
53	Use of fall-cone flow index for soil classification: a new plasticity chart. Geotechnique, 2023, 73, 648-654.	2.2	5
54	Discussion: Measuring the plastic limit of fine soils: an experimental study. Proceedings of the Institution of Civil Engineers: Geotechnical Engineering, 2016, 169, 86-89.	0.9	4

#	Article	IF	CITATIONS
55	Correlation of the Hydraulic Conductivity of Fine-Grained Soils with Water Content Ratio Using a Database. Environmental Geotechnics, 2019, , 1-12.	1.3	4
56	Survey of the use of data in UK bridge asset management. Proceedings of the Institution of Civil Engineers: Bridge Engineering, 2019, , 1-37.	0.3	4
57	Studying hydraulic conductivity of asphalt concrete using a database. Transportation Engineering, 2021, 3, 100040.	2.3	4
58	Discussion: Laboratory measurement of strength mobilisation in kaolin: link to stress history. Geotechnique Letters, 2013, 3, 16-17.	0.6	3
59	A new tram network for Bristol: a possible scenario?. Proceedings of the Institution of Civil Engineers: Municipal Engineer, 2016, 169, 19-30.	0.4	3
60	On the variability of the effective friction angle of Saint Lucian soils: investigations through a laboratory database. Ce/Papers, 2018, 2, 779-784.	0.1	3
61	Comparison of Prediction Models for the Permeability of Granular Materials Using a Database. Sustainable Civil Infrastructures, 2019, , 1-13.	0.1	3
62	Discussion of "Reclaimed Lignin-Stabilized Silty Soil: Undrained Shear Strength, Atterberg Limits, and Microstructure Characteristics―by Tao Zhang, Guojun Cai, and Songyu Liu. Journal of Materials in Civil Engineering, 2020, 32, .	1.3	3
63	The DINGO database of axial pile load tests for the UK: settlement prediction in fine-grained soils. Georisk, 2022, 16, 640-661.	2.6	3
64	Analytical Approaches to Predict Pile Settlement in London Clay. Sustainable Civil Infrastructures, 2019, , 162-180.	0.1	3
65	Theoretical t-z Curves for Axially Loaded Piles. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2022, 148, .	1.5	3
66	Discussion: Bored pile design in stiff clay I: codes of practice. Proceedings of the Institution of Civil Engineers: Geotechnical Engineering, 2014, 167, 87-88.	0.9	2
67	Discussion of "Evaluating the Relationship between Permeability and Moisture Damage of Asphalt Concrete Pavements―by Rafiqul A. Tarefder and Mohiuddin Ahmad. Journal of Materials in Civil Engineering, 2015, 27, 07015009.	1.3	2
68	Insights from CPTu and Seismic Cone Penetration Testing in the Kathmandu Valley, Nepal. Frontiers in Built Environment, 2021, 7, .	1.2	2
69	Co-Producing Data and Decision Support Tools to Reduce Landslide Risk in the Humid Tropics. ICL Contribution To Landslide Disaster Risk Reduction, 2021, , 567-573.	0.3	2
70	Discussion: How Eurocode 7 has affected geotechnical design: a review. Proceedings of the Institution of Civil Engineers: Geotechnical Engineering, 2013, 166, 610-612.	0.9	1
71	Discussion of "Undrained Young's Modulus of Fine-Grained Soils―by B. Casey, J. T. Germaine, N. O. Abdulhadi, N. S. Kontopoulos, and C. A. Jones. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2016, 142, 07016023.	1.5	1
72	Discussion: A new tram network for Bristol – a possible scenario?. Proceedings of the Institution of Civil Engineers: Municipal Engineer, 2017, 170, 185-185.	0.4	1

#	Article	IF	CITATIONS
73	Assessing the Potential Value of a SHM Deployment on a Proposed Footbridge. Sustainable Civil Infrastructures, 2019, , 151-166.	0.1	1
74	Developing an Experimental Strategy to Investigate Stress-Strain Models Using Kaolin. Sustainable Civil Infrastructures, 2019, , 99-118.	0.1	1
75	Capturing the views of geoscientists on data sharing: a focus on the geotechnical community. Quarterly Journal of Engineering Geology and Hydrogeology, 2021, 54, qjegh2019-138.	0.8	1
76	Analysis of visual inspection data for a sample of highway bridges in the UK. Proceedings of the Institution of Civil Engineers: Forensic Engineering, 0, , 1-10.	0.5	1
77	Discussion of "Characterization of Model Uncertainty for Cantilever Deflections in Undrained Clay― by D. M. Zhang, K. K. Phoon, H. W. Huang, and Q. F. Hu. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2016, 142, 07015036.	1.5	0
78	Discussion: Assessing the potential value of bridge monitoring systems. Proceedings of the Institution of Civil Engineers: Bridge Engineering, 2017, 170, 87-88.	0.3	0
79	Residential Damp Detection with Temperature and Humidity Urban Sensing. , 2019, , .		0
80	Assessing Transformation Models Using a Geo-Database of Site Investigation Data for the Kathmandu Valley, Nepal. Lecture Notes in Civil Engineering, 2021, , 331-338.	0.3	0
81	Soil Databases to Assist Slope Stability Assessments in the Eastern Caribbean. ICL Contribution To Landslide Disaster Risk Reduction, 2021, , 407-413.	0.3	0