Dirk Heckl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10421907/publications.pdf

Version: 2024-02-01

60 papers

8,792 citations

257450 24 h-index 50 g-index

64 all docs

64
docs citations

times ranked

64

18943 citing authors

#	Article	IF	Citations
1	The megakaryocytic transcription factor ARID3A suppresses leukemia pathogenesis. Blood, 2022, 139, 651-665.	1.4	20
2	Genetic barcoding systematically compares genes in del(5q) MDS and reveals a central role for <i>CSNK1A1</i> in clonal expansion. Blood Advances, 2022, 6, 1780-1796.	5.2	7
3	Combining LSD1 and JAK-STAT inhibition targets Down syndrome-associated myeloid leukemia at its core. Leukemia, 2022, 36, 1926-1930.	7.2	3
4	Long noncoding RNAs as regulators of pediatric acute myeloid leukemia. Molecular and Cellular Pediatrics, 2022, 9, .	1.8	3
5	Molecular Mechanisms of the Genetic Predisposition to Acute Megakaryoblastic Leukemia in Infants With Down Syndrome. Frontiers in Oncology, 2021, 11, 636633.	2.8	22
6	Comprehensive CRISPR-Cas9 screens identify genetic determinants of drug responsiveness in multiple myeloma. Blood Advances, 2021, 5, 2391-2402.	5.2	10
7	Functional characterization of BRCC3 mutations in acute myeloid leukemia with t(8;21)(q22;q22.1). Leukemia, 2020, 34, 404-415.	7.2	16
8	Meningioma 1 is indispensable for mixed lineage leukemia-rearranged acute myeloid leukemia. Haematologica, 2020, 105, 1294-1305.	3.5	8
9	LncRNA-SLC16A1-AS1 induces metabolic reprogramming during Bladder Cancer progression as target and co-activator of E2F1. Theranostics, 2020, 10, 9620-9643.	10.0	58
10	RNA-Binding Proteins in Acute Leukemias. International Journal of Molecular Sciences, 2020, 21, 3409.	4.1	36
11	Effective drug treatment identified by in vivo screening in a transplantable patient-derived xenograft model of chronic myelomonocytic leukemia. Leukemia, 2020, 34, 2951-2963.	7.2	13
12	Chromosome 21 gain is dispensable for transient myeloproliferative disorder driven by a novel GATA1 mutation. Leukemia, 2020, 34, 2503-2508.	7.2	4
13	The Regulatory Roles of Long Noncoding RNAs in Acute Myeloid Leukemia. Frontiers in Oncology, 2019, 9, 570.	2.8	26
14	Mechanisms of Progression of Myeloid Preleukemia to Transformed Myeloid Leukemia in Children with Down Syndrome. Cancer Cell, 2019, 36, 123-138.e10.	16.8	93
15	The stem cell–specific long noncoding RNA HOXA10-AS in the pathogenesis of KMT2A-rearranged leukemia. Blood Advances, 2019, 3, 4252-4263.	5.2	22
16	Deconstructing the Clonal Advantage and Clonal Stability of 5q- Candidate Genes in Del(5q) MDS on a Single Cell Level. Blood, 2019, 134, 559-559.	1.4	0
17	Exome Sequencing of Relapsed Multiple Myeloma Combined with Pooled CRISPR/Cas9 Screens Identifies Gene Mutations Associated with Drug-Specific Resistance. Blood, 2019, 134, 809-809.	1.4	0
18	Characterization of a Novel JAK1 Pseudokinase Mutation in the First Case of Trisomy 21-Independent GATA1-Mutated Transient Abnormal Myelopoiesis. Blood, 2019, 134, 4208-4208.	1.4	0

#	Article	IF	CITATIONS
19	<i>GATA1</i> s exerts developmental stage-specific effects in human hematopoiesis. Haematologica, 2018, 103, e336-e340.	3.5	15
20	Pooled Generation of Lentiviral Tetracycline-Regulated microRNA Embedded Short Hairpin RNA Libraries. Human Gene Therapy Methods, 2018, 29, 16-29.	2.1	3
21	Refined sgRNA efficacy prediction improves large- and small-scale CRISPR–Cas9 applications. Nucleic Acids Research, 2018, 46, 1375-1385.	14.5	213
22	Endogenous Tumor Suppressor microRNA-193b: Therapeutic and Prognostic Value in Acute Myeloid Leukemia. Journal of Clinical Oncology, 2018, 36, 1007-1016.	1.6	67
23	Jak2V617F and Dnmt3a loss cooperate to induce myelofibrosis through activated enhancer-driven inflammation. Blood, 2018, 132, 2707-2721.	1.4	56
24	Transient Retrovirus-Based CRISPR/Cas9 All-in-One Particles for Efficient, Targeted Gene Knockout. Molecular Therapy - Nucleic Acids, 2018, 13, 256-274.	5.1	34
25	MiR-193a Is a Negative Regulator of Hematopoietic Stem Cells and Promotes Anti-Leukemic Effects in Acute Myeloid Leukemia. Blood, 2018, 132, 2627-2627.	1.4	3
26	Modelling the Progression of a Preleukemic Stage to Overt Leukemia in Children with Down Syndrome. Blood, 2018, 132, 543-543.	1.4	1
27	Gli1 + Mesenchymal Stromal Cells Are a Key Driver of Bone Marrow Fibrosis and an Important Cellular Therapeutic Target. Cell Stem Cell, 2017, 20, 785-800.e8.	11.1	195
28	CRISPR-Cas9-induced t(11;19)/MLL-ENL translocations initiate leukemia in human hematopoietic progenitor cells <i>in vivo</i> . Haematologica, 2017, 102, 1558-1566.	3.5	60
29	An optimized lentiviral vector system for conditional RNAi and efficient cloning of microRNA embedded short hairpin RNA libraries. Biomaterials, 2017, 139, 102-115.	11.4	24
30	Scavenger receptor class B member 1 (SCARB1) variants modulate hepatitis C virus replication cycle and viral load. Journal of Hepatology, 2017, 67, 237-245.	3.7	26
31	The non-coding RNA landscape of human hematopoiesis and leukemia. Nature Communications, 2017, 8, 218.	12.8	131
32	Gene correction of HAX1 reversed Kostmann disease phenotype in patient-specific induced pluripotent stem cells. Blood Advances, 2017, 1, 903-914.	5.2	18
33	Copy-number and gene dependency analysis reveals partial copy loss of wild-type SF3B1 as a novel cancer vulnerability. ELife, 2017, 6, .	6.0	66
34	Core Circadian Clock Genes Regulate Leukemia Stem Cells in AML. Cell, 2016, 165, 303-316.	28.9	200
35	Alpharetroviral self-inactivating vectors produced by a superinfection-resistant stable packaging cell line allow genetic modification of primary human T lymphocytes. Biomaterials, 2016, 97, 97-109.	11.4	13
36	Multiple genetically engineered humanized microenvironments in a single mouse. Biomaterials Research, 2016, 20, 19.	6.9	11

#	Article	IF	Citations
37	Efficient generation of gene-modified human natural killer cells via alpharetroviral vectors. Journal of Molecular Medicine, 2016, 94, 83-93.	3.9	65
38	Crispr-Cas9 Mediated Disruption of Dnmt3a in JakV617F Hematopoietic Stem Cells Accelerates Disease Phenotype and Induces Lethal Myelofibrosis. Blood, 2016, 128, 794-794.	1.4	1
39	The miRNA-193 Family Is a Potent Tumor-Suppressor and a Biomarker for Poor Prognosis in Acute Myeloid Leukemia. Blood, 2016, 128, 1534-1534.	1.4	1
40	Toward Whole-Transcriptome Editing with CRISPR-Cas9. Molecular Cell, 2015, 58, 560-562.	9.7	11
41	Single-cell RNA-seq reveals changes in cell cycle and differentiation programs upon aging of hematopoietic stem cells. Genome Research, 2015, 25, 1860-1872.	5.5	614
42	Pharmacological GLI2 inhibition prevents myofibroblast cell-cycle progression and reduces kidney fibrosis. Journal of Clinical Investigation, 2015, 125, 2935-2951.	8.2	143
43	Crispr-Cas9 Induced MLL-Rearrangements Cause Clonal Outgrowth in CD34+ Hematopoietic Stem Cells. Blood, 2015, 126, 165-165.	1.4	2
44	The Mir-193 Family Antagonizes Stem Cell Pathways and Is a Potent Tumor Suppressor in Childhood and Adult Acute Myeloid Leukemia. Blood, 2015, 126, 1244-1244.	1.4	0
45	Ectopic expression of HOXC6 blocks myeloid differentiation and predisposes to malignant transformation. Experimental Hematology, 2014, 42, 114-125.e4.	0.4	10
46	Genome-Scale CRISPR-Cas9 Knockout Screening in Human Cells. Science, 2014, 343, 84-87.	12.6	4,210
47	Lenalidomide Causes Selective Degradation of IKZF1 and IKZF3 in Multiple Myeloma Cells. Science, 2014, 343, 301-305.	12.6	1,371
48	Role of Casein Kinase 1A1 in the Biology and Targeted Therapy of del(5q) MDS. Cancer Cell, 2014, 26, 509-520.	16.8	158
49	Generation of mouse models of myeloid malignancy with combinatorial genetic lesions using CRISPR-Cas9 genome editing. Nature Biotechnology, 2014, 32, 941-946.	17.5	477
50	GATA1-Centered Genetic Network on Chromosome 21 Drives Down Syndrome Acute Megakaryoblastic Leukemia. Blood, 2014, 124, 4310-4310.	1.4	0
51	Depletion of Jak2V617F myeloproliferative neoplasm-propagating stem cells by interferon-α in a murine model of polycythemia vera. Blood, 2013, 121, 3692-3702.	1.4	140
52	Lenalidomide Promotes CRBN-Mediated Ubiquitination and Degradation of IKZF1 and IKZF3. Blood, 2013, 122, LBA-5-LBA-5.	1.4	1
53	Critical Role Of Casein Kinase (Ck)1 \hat{l} ± Heterozygote Gene Inactivation In The Clonal Advantage Of Hematopoietic Stem Cells In Del(5q) MDS. Blood, 2013, 122, 98-98.	1.4	0
54	Lentiviral Vector Induced Insertional Haploinsufficiency of Ebf1 Causes Murine Leukemia. Molecular Therapy, 2012, 20, 1187-1195.	8.2	54

DIRK HECKL

#	Article	IF	CITATION
55	Inhibition of the CRBN-DDB1-CUL4-ROC1 E3 Ubiquitin Ligase Mediates the Anti-Proliferative and Immunomodulatory Properties of Lenalidomide. Blood, 2012, 120, 919-919.	1.4	1
56	Depletion of Jak2V617F MPN Stem Cells by IFNα in a Murine Model of Polycythemia Vera. Blood, 2012, 120, 806-806.	1.4	0
57	Lentiviral gene transfer regenerates hematopoietic stem cells in a mouse model for Mpl-deficient aplastic anemia. Blood, 2011, 117, 3737-3747.	1.4	27
58	Lentiviral Vector Induced Insertional Haploinsufficiency of Ebf1 Causes Leukemia in a Murine Bone Marrow Transplantation Model. Blood, 2011, 118, 671-671.	1.4	0
59	Retroviral Ectopic Expression of a Signaling-Defective Thrombopoietin Receptor (Mpl) Induces a Systemic Loss of Hematopoietic Stem Cells in Mice,. Blood, 2011, 118, 4175-4175.	1.4	0
60	Gene Therapy of Mpl Deficiency: Challenging Balance Between Leukemia and Pancytopenia. Molecular Therapy, 2010, 18, 343-352.	8.2	27