List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10420789/publications.pdf Version: 2024-02-01

FINDET KADOL

#	Article	IF	CITATIONS
1	Bio-hydrogen production from waste materials. Enzyme and Microbial Technology, 2006, 38, 569-582.	1.6	1,418
2	Bio-hydrogen production by different operational modes of dark and photo-fermentation: An overview. International Journal of Hydrogen Energy, 2011, 36, 7443-7459.	3.8	335
3	Salt inhibition on biological nutrient removal from saline wastewater in a sequencing batch reactor. Enzyme and Microbial Technology, 2004, 34, 313-318.	1.6	211
4	Biological nutrient removal from pre-treated landfill leachate in a sequencing batch reactor. Journal of Environmental Management, 2004, 71, 9-14.	3.8	161
5	A statistical experiment design approach for advanced oxidation of Direct Red azo-dye by photo-Fenton treatment. Journal of Hazardous Materials, 2009, 162, 230-236.	6.5	147
6	Bio-hydrogen production from acid hydrolyzed wheat starch by photo-fermentation using different Rhodobacter sp. International Journal of Hydrogen Energy, 2009, 34, 2201-2207.	3.8	139
7	Effect of salt concentration on biological treatment of saline wastewater by fed-batch operation. Enzyme and Microbial Technology, 1996, 19, 529-537.	1.6	128
8	Advanced oxidation of amoxicillin by Fenton's reagent treatment. Journal of Hazardous Materials, 2010, 179, 622-627.	6.5	123
9	Biological decolorization of textile dyestuff containing wastewater by Coriolus versicolor in a rotating biological contactor. Enzyme and Microbial Technology, 2002, 30, 195-199.	1.6	117
10	Simultaneous biodegradation and adsorption of textile dyestuff in an activated sludge unit. Process Biochemistry, 2002, 37, 973-981.	1.8	112
11	Light fermentation of dark fermentation effluent for bio-hydrogen production by different Rhodobacter species at different initial volatile fatty acid (VFA) concentrations. International Journal of Hydrogen Energy, 2008, 33, 7405-7412.	3.8	94
12	Biosorption performance of powdered activated sludge for removal of different dyestuffs. Enzyme and Microbial Technology, 2004, 35, 267-271.	1.6	91
13	Kinetics of sequential nitrification and denitrification processes. Enzyme and Microbial Technology, 2000, 27, 37-42.	1.6	85
14	Utilization of cheese whey powder (CWP) for ethanol fermentations: Effects of operating parameters. Enzyme and Microbial Technology, 2006, 38, 711-718.	1.6	82
15	Effects of the substrate and cell concentration on bio-hydrogen production from ground wheat by combined dark and photo-fermentation. International Journal of Hydrogen Energy, 2009, 34, 6181-6188.	3.8	82
16	Bio-hydrogen production by photo-fermentation of dark fermentation effluent with intermittent feeding and effluent removal. International Journal of Hydrogen Energy, 2010, 35, 6674-6680.	3.8	82
17	Adsorbent supplemented biological treatment of pre-treated landfill leachate by fed-batch operation. Bioresource Technology, 2004, 94, 285-291.	4.8	80
18	Kinetics of batch ethanol fermentation of cheese-whey powder (CWP) solution as function of substrate and yeast concentrations. Bioresource Technology, 2007, 98, 2978-2984.	4.8	80

#	Article	IF	CITATIONS
19	Removal of 2,4-dichlorophenol and toxicity from synthetic wastewater in a rotating perforated tube biofilm reactor. Process Biochemistry, 2005, 40, 2105-2111.	1.8	76
20	Bio-hydrogen production from cheese whey powder (CWP) solution: Comparison of thermophilic and mesophilic dark fermentations. International Journal of Hydrogen Energy, 2012, 37, 8338-8342.	3.8	71
21	Microbial culture selection for bio-hydrogen production from waste ground wheat by dark fermentation. International Journal of Hydrogen Energy, 2009, 34, 2195-2200.	3.8	70
22	Removal of copper(II) ions from aqueous medium by biosorption onto powdered waste sludge. Process Biochemistry, 2006, 41, 1047-1054.	1.8	69
23	Hydrogen gas production from cheese whey powder (CWP) solution by thermophilic dark fermentation. International Journal of Hydrogen Energy, 2012, 37, 2260-2266.	3.8	69
24	Optimization of media composition for hydrogen gas production from hydrolyzed wheat starch by dark fermentation. International Journal of Hydrogen Energy, 2008, 33, 4083-4090.	3.8	67
25	Effects of operating parameters on advanced oxidation of diuron by the Fenton's reagent: A statistical design approach. Chemosphere, 2007, 69, 485-492.	4.2	66
26	Effects of light source, intensity and lighting regime on bio-hydrogen production from ground wheat starch by combined dark and photo-fermentations. International Journal of Hydrogen Energy, 2010, 35, 1604-1612.	3.8	66
27	Solid-state fermentation of sweet sorghum to ethanol. Biotechnology and Bioengineering, 1985, 27, 34-40.	1.7	65
28	Biosorption of zinc(II) ions onto powdered waste sludge (PWS): Kinetics and isotherms. Enzyme and Microbial Technology, 2006, 38, 705-710.	1.6	65
29	Nutrient removal performance of a sequencing batch reactor as a function of the sludge age. Enzyme and Microbial Technology, 2002, 31, 842-847.	1.6	64
30	Effects of feed sugar concentration on continuous ethanol fermentation of cheese whey powder solution (CWP). Enzyme and Microbial Technology, 2007, 41, 876-880.	1.6	63
31	Comparison of bio-hydrogen production from hydrolyzed wheat starch by mesophilic and thermophilic dark fermentation. International Journal of Hydrogen Energy, 2010, 35, 13214-13218.	3.8	63
32	Saline Wastewater Treatment By Halophile-Supplemented Activated Sludge Culture in an Aerated Rotating Biodisc Contactor. Enzyme and Microbial Technology, 1998, 22, 427-433.	1.6	62
33	Ethanol production from cheese whey powder solution in a packed column bioreactor at different hydraulic residence times. Biochemical Engineering Journal, 2008, 42, 180-185.	1.8	62
34	Effects of sludge pre-treatment method on bio-hydrogen production by dark fermentation of waste ground wheat. International Journal of Hydrogen Energy, 2009, 34, 8543-8548.	3.8	62
35	Photo-fermentative hydrogen gas production from dark fermentation effluent of ground wheat solution: Effects of light source and light intensity. International Journal of Hydrogen Energy, 2010, 35, 1595-1603.	3.8	62
36	Bio-hydrogen production from ground wheat starch by continuous combined fermentation using annular-hybrid bioreactor. International Journal of Hydrogen Energy, 2010, 35, 6170-6178.	3.8	62

#	Article	IF	CITATIONS
37	Biological removal of pyritic sulfur from coal by the thermophilic organismSulfolobus acidocaldarius. Biotechnology and Bioengineering, 1985, 27, 41-49.	1.7	61
38	Solid-state fermentation of sweet sorghum to ethanol in a rotary-drum fermentor. Biotechnology and Bioengineering, 1985, 27, 1122-1125.	1.7	61
39	Microbial oxidation of dibenzothiophene by the thermophilic organismSulfolobus acidocaldarius. Biotechnology and Bioengineering, 1984, 26, 687-690.	1.7	60
40	Microbiological coal desulphurization. Enzyme and Microbial Technology, 1982, 4, 13-19.	1.6	59
41	Salt inhibition kinetics in nitrification of synthetic saline wastewater. Enzyme and Microbial Technology, 2001, 28, 661-665.	1.6	58
42	Removal of Sulfur Compounds from Coal by the Thermophilic Organism <i>Sulfolobus acidocaldarius</i> . Applied and Environmental Microbiology, 1982, 44, 878-883.	1.4	57
43	Decolorization of textile dyestuffs by a mixed bacterial consortium. Biotechnology Letters, 2000, 22, 1179-1181.	1.1	55
44	Hydrogen production by combined dark and light fermentation of ground wheat solution. International Journal of Hydrogen Energy, 2009, 34, 4305-4311.	3.8	55
45	Effect of carbon source on biological nutrient removal in a sequencing batch reactor. Bioresource Technology, 2003, 89, 89-93.	4.8	54
46	Hydrogen gas production by electrohydrolysis of volatile fatty acid (VFA) containing dark fermentation effluent. International Journal of Hydrogen Energy, 2009, 34, 262-269.	3.8	53
47	Dark fermentation of ground wheat starch for bio-hydrogen production by fed-batch operation. International Journal of Hydrogen Energy, 2009, 34, 2940-2946.	3.8	52
48	Plant Cell Bioreactors: Present Status and Future Trends. Biotechnology Progress, 1987, 3, 1-8.	1.3	51
49	Ethanol fermentation of cheese whey powder solution by repeated fed-batch operation. Enzyme and Microbial Technology, 2007, 41, 169-174.	1.6	51
50	Removal of organic sulphur from bituminous coal. Fuel, 1986, 65, 397-399.	3.4	50
51	Biological Treatment of Saline Wastewater by Fed-Batch Operation. Journal of Chemical Technology and Biotechnology, 1997, 69, 167-172.	1.6	46
52	Advanced oxidation and mineralization of simazine using Fenton's reagent. Journal of Hazardous Materials, 2009, 168, 688-694.	6.5	45
53	Aerobic biological treatment of pre-treated landfill leachate by fed-batch operation. Enzyme and Microbial Technology, 2003, 33, 588-595.	1.6	44
54	Bio-hydrogen production from acid hydrolyzed waste ground wheat by dark fermentation. International Journal of Hydrogen Energy, 2011, 36, 12803-12809.	3.8	44

#	Article	IF	CITATIONS
55	Enhanced biological treatment of saline wastewater by using halophilic bacteria. Biotechnology Letters, 2002, 24, 1569-1572.	1.1	39
56	Nutrient removal performance of a five-step sequencing batch reactor as a function of wastewater composition. Process Biochemistry, 2003, 38, 1039-1045.	1.8	39
57	Toxicity and batch biodegradation kinetics of 2,4 dichlorophenol by pure Pseudomonas putida culture. Enzyme and Microbial Technology, 2004, 35, 424-428.	1.6	39
58	Batch kinetics and isotherms for biosorption of copper(II) ions onto pre-treated powdered waste sludge (PWS). Journal of Hazardous Materials, 2006, 138, 479-484.	6.5	38
59	Phenol inhibition of biological nutrient removal in a four-step sequencing batch reactor. Process Biochemistry, 2004, 39, 2123-2128.	1.8	37
60	Kinetics of 2,4-dichlorophenol degradation by Pseudomonas putida CP1 in batch culture. International Biodeterioration and Biodegradation, 2005, 55, 25-28.	1.9	36
61	Phosphate uptake and release rates with different carbon sources in biological nutrient removal using a SBR. Journal of Environmental Management, 2005, 76, 71-75.	3.8	35
62	Comparison of different mixed cultures for bio-hydrogen production from ground wheat starch by combined dark and light fermentation. Journal of Industrial Microbiology and Biotechnology, 2010, 37, 341-347.	1.4	35
63	Utilization of powdered waste sludge (PWS) for removal of textile dyestuffs from wastewater by adsorption. Journal of Environmental Management, 2006, 81, 307-314.	3.8	33
64	Copper(II) ion toxicity in activated sludge processes as function of operating parameters. Enzyme and Microbial Technology, 2007, 40, 1228-1233.	1.6	33
65	Salt Inhibition Effects in Biological Treatment of Saline Wastewater in RBC. Journal of Environmental Engineering, ASCE, 1999, 125, 966-971.	0.7	32
66	Batch biological treatment of nitrogen deficient synthetic wastewater using Azotobacter supplemented activated sludge. Bioresource Technology, 2004, 94, 113-117.	4.8	32
67	Hydrogen gas production from waste anaerobic sludge by electrohydrolysis: Effects of applied DC voltage. International Journal of Hydrogen Energy, 2011, 36, 2049-2056.	3.8	32
68	Comparison of adsorption performances of powdered activated sludge and powdered activated carbon for removal of turquoise blue dyestuff. Process Biochemistry, 2005, 40, 2539-2544.	1.8	31
69	Hydrogen gas production from electrohydrolysis of industrial wastewater organics by using photovoltaic cells (PVC)â~†. International Journal of Hydrogen Energy, 2010, 35, 12761-12766.	3.8	31
70	Enhancement of microbial removal of pyritic sulfur from coal using concentrated cell suspension ofT. ferrooxidans and an external carbon dioxide supply. Biotechnology and Bioengineering, 1982, 24, 749-752.	1.7	30
71	Effects of operating parameters on performances of nitrification and denitrification processes. Bioprocess and Biosystems Engineering, 2000, 23, 75-80.	1.7	30
72	A dynamic mathematical model for microbial removal of pyritic sulfur from coal. Biotechnology and Bioengineering, 1984, 26, 604-612.	1.7	29

#	Article	IF	CITATIONS
73	Biological treatment of synthetic wastewater containing 2,4 dichlorophenol (DCP) in an activated sludge unit. Journal of Environmental Management, 2005, 76, 191-196.	3.8	29
74	Biosorption of copper(II) ions onto powdered waste sludge in a completely mixed fed-batch reactor: Estimation of design parameters. Bioresource Technology, 2007, 98, 1155-1162.	4.8	28
75	Mathematical modeling of copper(II) ion inhibition on COD removal in an activated sludge unit. Journal of Hazardous Materials, 2007, 146, 372-377.	6.5	28
76	Hydrogen gas production from olive mill wastewater by electrohydrolysis with simultaneous COD removal. International Journal of Hydrogen Energy, 2011, 36, 3457-3464.	3.8	28
77	Dark fermentative bio-hydrogen production from waste wheat starch using co-culture with periodic feeding: Effects of substrate loading rate. International Journal of Hydrogen Energy, 2011, 36, 7089-7093.	3.8	28
78	Biological treatment of 2,4,6-trichlorophenol (TCP) containing wastewater in a hybrid bioreactor system with effluent recycle. Journal of Environmental Management, 2009, 90, 692-698.	3.8	27
79	Comparison of different electrodes in hydrogen gas production from electrohydrolysis of wastewater organics using photovoltaic cells (PVC)â^†. International Journal of Hydrogen Energy, 2011, 36, 3450-3456.	3.8	27
80	Effects of operating parameters on kinetics of copper(II) ion biosorption onto pre-treated powdered waste sludge (PWS). Enzyme and Microbial Technology, 2007, 42, 76-82.	1.6	26
81	Para-chlorophenol containing synthetic wastewater treatment in an activated sludge unit: Effects of hydraulic residence time. Journal of Environmental Management, 2007, 84, 20-26.	3.8	26
82	Effects of starch loading rate on performance of combined fed-batch fermentation of ground wheat for bio-hydrogen production. International Journal of Hydrogen Energy, 2010, 35, 1106-1111.	3.8	26
83	Effects of dark/light bacteria ratio on bio-hydrogen production by combined fed-batch fermentation of ground wheat starch. Biomass and Bioenergy, 2010, 34, 869-874.	2.9	26
84	Powdered activated carbon added biological treatment of pre-treated landfill leachate in a fed-batch reactor. Biotechnology Letters, 2003, 25, 695-699.	1.1	25
85	Electrohydrolysis of landfill leachate organics for hydrogen gas production and COD removal. International Journal of Hydrogen Energy, 2011, 36, 8252-8260.	3.8	25
86	Thermophilic dark fermentation of acid hydrolyzed waste ground wheat for hydrogen gas production. International Journal of Hydrogen Energy, 2011, 36, 2111-2117.	3.8	24
87	Biological oxidation of thianthrene, thioxanthene and dibenzothiophene by the thermophilic organismSulfolobus acidocaldarius. Biotechnology Letters, 1987, 9, 478-482.	1.1	23
88	COD, para-chlorophenol and toxicity removal from para-chlorophenol containing synthetic wastewater in an activated sludge unit. Journal of Hazardous Materials, 2006, 132, 226-231.	6.5	23
89	Continuous ethanol fermentation of cheese whey powder solution: effects of hydraulic residence time. Bioprocess and Biosystems Engineering, 2007, 30, 79-86.	1.7	23
90	Advanced Oxidation of Direct Red (DR 28) by Fenton Treatment. Environmental Engineering Science, 2008, 25, 1455-1462.	0.8	22

#	Article	IF	CITATIONS
91	Hydrogen gas production from acid hydrolyzed wheat starch by combined dark and photo-fermentation with periodic feeding. International Journal of Hydrogen Energy, 2011, 36, 10683-10689.	3.8	22
92	Elimination of Cu(II) toxicity by powdered waste sludge (PWS) addition to an activated sludge unit treating Cu(II) containing synthetic wastewater. Journal of Hazardous Materials, 2007, 148, 274-280.	6.5	21
93	Photo-fermentative hydrogen gas production from dark fermentation effluent of acid hydrolyzed wheat starch with periodic feeding. International Journal of Hydrogen Energy, 2011, 36, 4348-4353.	3.8	21
94	Alkaloid formation by Catharanthus roseus cells in a packed column biofilm reactor. Biotechnology Letters, 1988, 10, 181-186.	1.1	20
95	Biodegradation kinetics of 2,4,6-trichlorophenol by Rhodococcus rhodochrous in batch culture. Enzyme and Microbial Technology, 2008, 43, 43-47.	1.6	20
96	Fermentation of cheese whey powder solution to ethanol in a packed olumn bioreactor: effects of feed sugar concentration. Journal of Chemical Technology and Biotechnology, 2009, 84, 106-111.	1.6	20
97	Empirical models for biological treatment of saline wastewater in rotating biodisc contactor. Process Biochemistry, 2002, 38, 399-403.	1.8	19
98	Advanced Oxidation of Diuron by Photo-Fenton Treatment as a Function of Operating Parameters. Journal of Environmental Engineering, ASCE, 2008, 134, 1006-1013.	0.7	19
99	2,4-Dichlorophenol (DCP) containing wastewater treatment using a hybrid-loop bioreactor. Bioresource Technology, 2009, 100, 1459-1462.	4.8	19
100	Hydraulic residence time effects in biological nutrient removal using five-step sequencing batch reactor. Enzyme and Microbial Technology, 2004, 35, 167-172.	1.6	18
101	Improved Nutrient Removal from Saline Wastewater in an SBR by Halobacter Supplemented Activated Sludge. Environmental Engineering Science, 2005, 22, 170-176.	0.8	18
102	Zinc (II) ion recovery by biosorption onto powdered waste sludge (PWS): effects of operating conditions. Journal of Chemical Technology and Biotechnology, 2006, 81, 1661-1668.	1.6	18
103	Optimal biofilm thickness for fluidised-bed biofilm reactors. Journal of Chemical Technology and Biotechnology, 2007, 32, 744-748.	0.2	18
104	Performance of a hybrid-loop bioreactor system in biological treatment of 2,4,6-tri-chlorophenol containing synthetic wastewater: Effects of hydraulic residence time. Journal of Hazardous Materials, 2007, 144, 86-92.	6.5	18
105	Microbial methods for desulfurization of coal. Trends in Biotechnology, 1986, 4, 293-297.	4.9	17
106	Effect of sludge age on performance of an activated sludge unit treating 2,4 dichlorophenol-containing synthetic wastewater. Enzyme and Microbial Technology, 2006, 38, 60-64.	1.6	17
107	COD, 2,4,6-trichlorophenol (TCP) and toxicity removal from synthetic wastewater in a rotating perforated-tubes biofilm reactor. Journal of Hazardous Materials, 2008, 159, 306-312.	6.5	17
108	Simultaneous hydrogen gas formation and COD removal from cheese whey wastewater by electrohydrolysis. International Journal of Hydrogen Energy, 2012, 37, 11656-11665.	3.8	17

#	Article	IF	CITATIONS
109	Comparison of performances of rotating perforated tubes and rotating biodiscs biofilm reactors for wastewater treatment. Process Biochemistry, 2002, 37, 1201-1206.	1.8	16
110	High power generation with simultaneous COD removal using a circulating column microbial fuel cell. Journal of Chemical Technology and Biotechnology, 2009, 84, 961-965.	1.6	16
111	Generalized rate equation for single-substrate enzyme catalyzed reactions. Biochemical and Biophysical Research Communications, 2009, 382, 157-159.	1.0	16
112	Dark fermentation of acid hydrolyzed ground wheat starch for bio-hydrogen production by periodic feeding and effluent removal. International Journal of Hydrogen Energy, 2010, 35, 9630-9636.	3.8	16
113	para-Chlorophenol inhibition on COD, nitrogen and phosphate removal from synthetic wastewater in a sequencing batch reactor. Bioresource Technology, 2005, 96, 1696-1702.	4.8	15
114	Determination of model parameters for zinc (II) ion biosorption onto powdered waste sludge (PWS) in a fed–batch system. Journal of Environmental Management, 2007, 85, 883-890.	3.8	15
115	Degradation and Mineralization of Simazine in Aqueous Solution by Ozone/Hydrogen Peroxide Advanced Oxidation. Journal of Environmental Engineering, ASCE, 2009, 135, 1357-1364.	0.7	15
116	COD, para-chlorophenol and toxicity removal from synthetic wastewater using rotating tubes biofilm reactor (RTBR). Bioresource Technology, 2010, 101, 9020-9024.	4.8	15
117	Biological treatment of 2,4-dichlorophenol containing synthetic wastewater using a rotating brush biofilm reactor. Bioresource Technology, 2008, 99, 2319-2325.	4.8	14
118	Effects of operating parameters on acid hydrolysis of ground wheat starch: Maximization of the sugar yield by statistical experiment design. Starch/Staerke, 2011, 63, 311-318.	1.1	14
119	Nutrient loading rate effects on nutrient removal in a five-step sequencing batch reactor. Process Biochemistry, 2003, 39, 507-512.	1.8	13
120	Biological treatment of para-chlorophenol containing synthetic wastewater using rotating brush biofilm reactor. Journal of Hazardous Materials, 2006, 135, 365-371.	6.5	13
121	Removal of Cu(II) ions by biosorption onto powdered waste sludge (PWS) prior to biological treatment in an activated sludge unit: A statistical design approach. Bioresource Technology, 2009, 100, 2348-2354.	4.8	13
122	Rotating-Perforated-Tubes Biofilm Reactor for High-Strength Wastewater Treatment. Journal of Environmental Engineering, ASCE, 2001, 127, 959-963.	0.7	11
123	Impacts of COD and DCP loading rates on biological treatment of 2,4-dichlorophenol (DCP) containing wastewater in a perforated tubes biofilm reactor. Chemosphere, 2006, 64, 1609-1617.	4.2	11
124	Kinetic modeling and parameter estimation in biological treatment of 2,4-dichlorophenol containing wastewater using rotating perforated tubes biofilm reactor. Enzyme and Microbial Technology, 2006, 38, 860-866.	1.6	11
125	Mathematical modelling of 4-chlorophenol inhibition on COD and 4-chlorophenol removals in an activated sludge unit. Journal of Hazardous Materials, 2007, 143, 233-239.	6.5	11
126	Effect of initial bacteria concentration on hydrogen gas production from cheese whey powder solution by thermophilic dark fermentation. Biotechnology Progress, 2012, 28, 931-936.	1.3	11

#	Article	IF	CITATIONS
127	Effect of particle number density on wastewater treatment performance of a fluidized-bed bioreactor. Enzyme and Microbial Technology, 1996, 19, 140-144.	1.6	9
128	Title is missing!. Water, Air, and Soil Pollution, 2002, 138, 375-386.	1.1	9
129	Nutrient Removal in a Three-Step Sequencing Batch Reactor with Different Carbon Sources. Water, Air, and Soil Pollution, 2004, 156, 71-82.	1.1	9
130	Kinetic parameter estimation in microbial desulfurization of coal. Biotechnology and Bioengineering, 1987, 30, 1063-1066.	1.7	8
131	Mathematical model for microbial oxidation of pure lead sulfide byThiobacillus ferrooxidans. Biotechnology and Bioengineering, 1989, 34, 487-495.	1.7	8
132	Rational design of metal mesh particles for biological fluidized bed reactors. Journal of Chemical Technology and Biotechnology, 1994, 59, 201-204.	1.6	8
133	Effects of Reagent Concentrations on Advanced Oxidation of Amoxicillin by Photo-Fenton Treatment. Journal of Environmental Engineering, ASCE, 2011, 137, 472-480.	0.7	8
134	Performance of rotating perforated tubes biofilm reactor in biological wastewater treatment. Enzyme and Microbial Technology, 2003, 32, 464-471.	1.6	7
135	Improved hydrogen gas production in electrohydrolysis of vinegar fermentation wastewater by scrap aluminum and salt addition. International Journal of Hydrogen Energy, 2013, 38, 4389-4396.	3.8	7
136	Hydrogen gas production from vinegar fermentation wastewater by electro-hydrolysis: Effects of initial COD content. International Journal of Hydrogen Energy, 2013, 38, 2701-2708.	3.8	7
137	2,4,6 Tri-Chlorophenol Containing Wastewater Treatment Using a Hybrid-Loop Bioreactor System. Journal of Environmental Engineering, ASCE, 2007, 133, 340-345.	0.7	6
138	Response Surface Analysis of Photoâ€Fenton Oxidation of Simazine. Water Environment Research, 2009, 81, 735-742.	1.3	6
139	Biological nutrient removal in sequencing batch reactor with different number of steps. Clean Technologies and Environmental Policy, 2003, 6, 61-65.	2.1	5
140	Hydraulic Residence Time Effects on Performance of an Activated Sludge Unit Treating Wastewater Containing Dichlorophenol. Water Environment Research, 2006, 78, 686-690.	1.3	5
141	Valorization of Cheese Whey by Electrohydrolysis for Hydrogen Gas Production and COD Removal. Waste and Biomass Valorization, 2013, 4, 517-528.	1.8	5
142	Kinetic Modeling and Parameter Estimation for an Activated Sludge Unit Treating 2,4 Dichlorophenol Containing Synthetic Wastewater. Environmental Engineering Science, 2006, 23, 263-271.	0.8	4
143	Electro-hydrolysis of cheese whey solution for hydrogen gas production and chemical oxygen demand (COD) removal using photo-voltaic cells (PVC). International Journal of Hydrogen Energy, 2012, 37, 15841-15849.	3.8	4
144	Electrohydrolysis of Vinegar Fermentation Wastewater for Hydrogen Gas Production Using Different Types of Electrodes. Journal of Environmental Engineering, ASCE, 2013, 139, 881-886.	0.7	4

#	Article	IF	CITATIONS
145	Kinetics of Zinc(II) Ion Biosorption onto Powdered Waste Sludge (PWS) at Different Operating Conditions. Environmental Engineering Science, 2007, 24, 687-695.	0.8	3
146	Performance of a rotating brush biofilm reactor treating 2,4,6-trichlorophenol (TCP) containing synthetic wastewater. Enzyme and Microbial Technology, 2007, 41, 466-473.	1.6	3
147	Biological Treatment of Cu(II) Containing Synthetic Wastewater in an Activated Sludge Unit: Copper(II) Ion Toxicity. Environmental Engineering Science, 2008, 25, 1159-1166.	0.8	3
148	Title is missing!. Biotechnology Letters, 2002, 24, 1281-1284.	1.1	2
149	Cu(II) Ion Recovery by Biosorption onto Powdered Waste Sludge (PWS) in a Fedâ€Batch Reactor: Particle Size Effects. Separation Science and Technology, 2007, 42, 285-298.	1.3	2
150	Biological Nutrient Removal from Synthetic Wastewater Containing 2,4 Dichlorophenol in a Sequencing Batch Reactor. Environmental Engineering Science, 2004, 21, 569-574.	0.8	1
151	Performance of an Activated Sludge Unit Treating Para-Chlorophenol-Containing Wastewater as Function of Sludge Age. Environmental Engineering Science, 2006, 23, 705-711.	0.8	1