Kari Keinänen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10420331/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Molecular mechanisms controlling synaptic recruitment of GluA4 subunit-containing AMPA-receptors critical for functional maturation of CA1 glutamatergic synapses. Neuropharmacology, 2017, 112, 46-56.	4.1	14
2	Aggregation Limits Surface Expression of Homomeric GluA3 Receptors. Journal of Biological Chemistry, 2016, 291, 8784-8794.	3.4	8
3	The N-terminal Domain Modulates α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) Receptor Desensitization. Journal of Biological Chemistry, 2014, 289, 13197-13205.	3.4	23
4	Post-Synapse Model Cell for Synaptic Glutamate Receptor (GluR)-Based Biosensing: Strategy and Engineering to Maximize Ligand-Gated Ion-Flux Achieving High Signal-to-Noise Ratio. Sensors, 2012, 12, 1035-1041.	3.8	2
5	Autoinactivation of the Stargazin–AMPA Receptor Complex: Subunit-Dependency and Independence from Physical Dissociation. PLoS ONE, 2012, 7, e49282.	2.5	13
6	Engineered synapse model cell: genetic construction and chemical evaluation for reproducible high-throughput analysis. Analytical and Bioanalytical Chemistry, 2010, 396, 1153-1157.	3.7	3
7	Specific gene transfer to neurons, endothelial cells and hematopoietic progenitors with lentiviral vectors. Nature Methods, 2010, 7, 929-935.	19.0	126
8	Analysis of the Potential Role of GluA4 Carboxyl-Terminus in PDZ Interactions. PLoS ONE, 2010, 5, e8715.	2.5	9
9	Ligand-binding Domain Determines Endoplasmic Reticulum Exit of AMPA Receptors. Journal of Biological Chemistry, 2010, 285, 36032-36039.	3.4	29
10	Agonist Occupancy Is Essential for Forward Trafficking of AMPA Receptors. Journal of Neuroscience, 2009, 29, 303-312.	3.6	36
11	Ethanol increases desensitization of recombinant GluR-D AMPA receptor and TARP combinations. Alcohol, 2009, 43, 277-284.	1.7	15
12	KCC2 Interacts with the Dendritic Cytoskeleton to Promote Spine Development. Neuron, 2007, 56, 1019-1033.	8.1	280
13	Isoform-Specific Early Trafficking of AMPA Receptor Flip and Flop Variants. Journal of Neuroscience, 2006, 26, 11220-11229.	3.6	58
14	Stereochemistry of Glutamate Receptor Agonist Efficacy:Â Engineering a Dual-Specificity AMPA/Kainate Receptorâ€. Biochemistry, 2004, 43, 15838-15844.	2.5	23
15	The Three-dimensional Structure of an Ionotropic Glutamate Receptor Reveals a Dimer-of-dimers Assembly. Journal of Molecular Biology, 2004, 344, 435-442.	4.2	113
16	Characterization of the functional role of the N-glycans in the AMPA receptor ligand-binding domain. Journal of Neurochemistry, 2003, 84, 1184-1192.	3.9	17
17	A Biosensing System Based on Extracellular Potential Recording of Ligand-Gated Ion Channel Function Overexpressed in Insect Cells. Analytical Chemistry, 2003, 75, 918-921.	6.5	17
18	Surface Expression of GluR-D AMPA Receptor Is Dependent on an Interaction between Its C-Terminal Domain and a 4.1 Protein. Journal of Neuroscience, 2003, 23, 798-806.	3.6	93

Kari KeinÃ**¤**en

#	Article	IF	CITATIONS
19	α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid (AMPA) Receptor Channels Lacking the N-terminal Domain. Journal of Biological Chemistry, 2002, 277, 49662-49667.	3.4	76
20	Selective Binding of Synapse-associated Protein 97 to GluR-A α-Amino-5-hydroxy-3-methyl-4-isoxazole Propionate Receptor Subunit Is Determined by a Novel Sequence Motif. Journal of Biological Chemistry, 2002, 277, 31484-31490.	3.4	81
21	Discrimination between Agonists and Antagonists by the α-Amino-3-hydroxy-5-methyl-4-isoxazole Propionic Acid-selective Glutamate Receptor. Journal of Biological Chemistry, 2002, 277, 41940-41947.	3.4	10
22	Determinants of antagonist binding at the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor subunit, GluR-D. FEBS Journal, 2002, 269, 6261-6270.	0.2	8
23	First Images of a Glutamate Receptor Ion Channel:  Oligomeric State and Molecular Dimensions of GluRB Homomers. Biochemistry, 2001, 40, 13948-13953.	2.5	64
24	Microscopic characterization of Langmuir–Blodgett films incorporating biosynthetically lipid-tagged antibody. Sensors and Actuators B: Chemical, 2001, 76, 181-186.	7.8	6
25	Large-scale expression and thermodynamic characterization of a glutamate receptor agonist-binding domain. FEBS Journal, 2000, 267, 4281-4289.	0.2	27
26	Use of proteoliposomes to generate phage antibodies against native AMPA receptor. FEBS Journal, 2000, 267, 1382-1389.	0.2	31
27	Engineering, Purification and Applications of His-Tagged Recombinant Antibody Fragments with Specificity for the Major Birch Pollen Allergen, Bet v1. Biological Chemistry, 2000, 381, 39-47.	2.5	13
28	Agonist-induced Isomerization in a Glutamate Receptor Ligand-binding Domain. Journal of Biological Chemistry, 2000, 275, 21355-21363.	3.4	105
29	Oligomerization and Ligand-binding Properties of the Ectodomain of the α-Amino-3-hydroxy-5-methyl-4-isoxazole Propionic Acid Receptor Subunit GluRD. Journal of Biological Chemistry, 1999, 274, 28937-28943.	3.4	87
30	A Molecular Envelope of the Ligand-Binding Domain of a Glutamate Receptor in the Presence and Absence of Agonistâ€. Biochemistry, 1999, 38, 10949-10957.	2.5	30
31	Use of a Quartz Crystal Microbalance To Monitor Immunoliposomeâ^'Antigen Interaction. Analytical Chemistry, 1998, 70, 260-264.	6.5	61
32	Characterization of the kainate-binding domain of the glutamate receptor GluR-6 subunit. Biochemical Journal, 1998, 330, 1461-1467.	3.7	35
33	Disulfide Bonding and Cysteine Accessibility in the α-Amino-3-hydroxy-5-methylisoxazole-4-propionic Acid Receptor Subunit GluRD. Journal of Biological Chemistry, 1998, 273, 25132-25138.	3.4	25
34	Phage Display Selection on Whole Cells Yields a Peptide Specific for Melanocortin Receptor 1. Journal of Biological Chemistry, 1997, 272, 27943-27948.	3.4	77
35	A Fluoroimmunoassay Based on Immunoliposomes Containing Genetically Engineered Lipid-Tagged Antibody. Analytical Chemistry, 1997, 69, 1295-1298.	6.5	19
36	Baculoviral Display of the Green Fluorescent Protein and Rubella Virus Envelope Proteins. Biochemical and Biophysical Research Communications, 1997, 238, 717-722.	2.1	73

Kari KeinÃ**¤**en

#	Article	IF	CITATIONS
37	Highly efficient production of GFP and its derivatives in insect cells for visual in vitro applications. FEBS Letters, 1996, 389, 238-243.	2.8	30
38	Expression of Functional Melanocortin 1 Receptors in Insect Cells. Biochemical and Biophysical Research Communications, 1996, 221, 807-814.	2.1	27
39	Secretion of Green Fluorescent Protein from Recombinant Baculovirus-Infected Insect Cells. Biochemical and Biophysical Research Communications, 1996, 226, 755-761.	2.1	37
40	Characterization of the Ligand-binding Domains of Glutamate Receptor (GluR)-B and GluR-D Subunits Expressed in as Periplasmic Proteins. Journal of Biological Chemistry, 1996, 271, 15527-15532.	3.4	61
41	Purification of Recombinant GluR-D Glutamate Receptor Produced in Sf21 Insect Cells. FEBS Journal, 1995, 233, 720-726.	0.2	36
42	Use of genetically engineered lipid-tagged antibody to generate functional europium chelate-loaded liposomes Application in fluoroimmunoassay. Journal of Immunological Methods, 1995, 185, 95-102.	1.4	28
43	High-level Expression of Functional Glutamate Receptor Channels in Insect Cells. Nature Biotechnology, 1994, 12, 802-806.	17.5	23
44	Biosynthetic lipid-tagging of antibodies. FEBS Letters, 1994, 346, 123-126.	2.8	15
45	Lipid-tagged antibodies: bacterial expression and characterization of a lipoprotein—single-chain antibody fusion protein. Protein Engineering, Design and Selection, 1993, 6, 449-454.	2.1	38
46	High-affinity kainate a domoate receptors in rat brain. FEBS Letters, 1992, 307, 139-143.	2.8	128
47	Cloning, pharmacological characteristics and expression pattern of the rat GABAA receptor α4 subunit. FEBS Letters, 1991, 289, 227-230.	2.8	241
48	Cloning of a putative high-affinity kainate receptor expressed predominantly in hippocampal CA3 cells. Nature, 1991, 351, 742-744.	27.8	448
49	Molecular Biology of Glutamate-Gated Channels: Focus on AMPA and Kainate. , 1991, , 17-41.		0
50	Cerebellar GABAA receptor selective for a behavioural alcohol antagonist. Nature, 1990, 346, 648-651.	27.8	562
51	A Family of AMPA-Selective Glutamate Receptors. Science, 1990, 249, 556-560.	12.6	1,489