
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1041775/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Controlled release urea improves rice production and reduces environmental pollution: a research based on meta-analysis and machine learning. Environmental Science and Pollution Research, 2022, 29, 3587-3599.	5.3	24
2	Antibiotic resistance genes alternation in soils modified with neutral and alkaline salts: interplay of salinity stress and response strategies of microbes. Science of the Total Environment, 2022, 809, 152246.	8.0	16
3	Impact of Biochar Application on Ammonia Volatilization from Paddy Fields under Controlled Irrigation. Sustainability, 2022, 14, 1337.	3.2	1
4	Can ensemble machine learning be used to predict the groundwater level dynamics of farmland under future climate: a 10-year study on Huaibei Plain. Environmental Science and Pollution Research, 2022, 29, 44653-44667.	5.3	12
5	Coupling machine learning and weather forecast to predict farmland flood disaster: A case study in Yangtze River basin. Environmental Modelling and Software, 2022, 155, 105436.	4.5	23
6	Effect of Irrigation and Fertilizer Management on Rice Yield and Nitrogen Loss: A Meta-Analysis. Plants, 2022, 11, 1690.	3.5	22
7	Effects of Biochar Addition on Rice Growth and Yield under Water-Saving Irrigation. Water (Switzerland), 2021, 13, 209.	2.7	28
8	Biochar as a tool to reduce environmental impacts of nitrogen loss in water-saving irrigation paddy field. Journal of Cleaner Production, 2021, 290, 125811.	9.3	43
9	Antibiotic resistance genes attenuation in anaerobic microorganisms during iron uptake from zero valent iron: An iron-dependent form of homeostasis and roles as regulators. Water Research, 2021, 195, 116979.	11.3	34
10	Attenuation effects of iron on dissemination of antibiotic resistance genes in anaerobic bioreactor: Evolution of quorum sensing, quorum quenching and dynamics of community composition. Journal of Hazardous Materials, 2021, 416, 126136.	12.4	23
11	Biochar improved soil health and mitigated greenhouse gas emission from controlled irrigation paddy field: Insights into microbial diversity. Journal of Cleaner Production, 2021, 318, 128595.	9.3	42
12	Modeling Climate Change Effects on Rice Yield and Soil Carbon under Variable Water and Nutrient Management. Sustainability, 2021, 13, 568.	3.2	16
13	Optimal Operation Model of Drainage Works for Minimizing Waterlogging Loss in Paddy Fields. Water (Switzerland), 2021, 13, 2811.	2.7	4
14	Evaporative fraction and its application in estimating daily evapotranspiration of water-saving irrigated rice field. Journal of Hydrology, 2020, 584, 124317.	5.4	15
15	Effect of biochar addition on CO2 exchange in paddy fields under water-saving irrigation in Southeast China. Journal of Environmental Management, 2020, 271, 111029.	7.8	17
16	Effects of Biochar Application on Soil Organic Carbon Composition and Enzyme Activity in Paddy Soil under Water-Saving Irrigation. International Journal of Environmental Research and Public Health, 2020, 17, 333.	2.6	45
17	Storing and removing nitrogen in drainage from paddy field by using aquatic crops wetland. Paddy and Water Environment, 2020, 18, 587-594.	1.8	4
18	Temporal Upscaling of Rice Evapotranspiration Based on Canopy Resistance in a Water-Saving Irrigated Rice Field. Journal of Hydrometeorology, 2020, 21, 1639-1654.	1.9	1

#	Article	IF	CITATIONS
19	A general non-rectangular hyperbola equation for photosynthetic light response curve of rice at various leaf ages. Scientific Reports, 2019, 9, 9909.	3.3	18
20	Effects of biochar addition on the NEE and soil organic carbon content of paddy fields under water-saving irrigation. Environmental Science and Pollution Research, 2019, 26, 8303-8311.	5.3	13
21	Surface Energy Partitioning and Evaporative Fraction in a Water-Saving Irrigated Rice Field. Atmosphere, 2019, 10, 51.	2.3	12
22	Biochar improved rice yield and mitigated CH4 and N2O emissions from paddy field under controlled irrigation in the Taihu Lake Region of China. Atmospheric Environment, 2019, 200, 69-77.	4.1	87
23	Modeling rice development and field water balance using AquaCrop model under drying-wetting cycle condition in eastern China. Agricultural Water Management, 2019, 213, 289-297.	5.6	42
24	Organic fertilizer application increases the soil respiration and net ecosystem carbon dioxide absorption of paddy fields under water-saving irrigation. Environmental Science and Pollution Research, 2018, 25, 9958-9968.	5.3	13
25	Performance evaluation of irrigation projects: Theories, methods, and techniques. Agricultural Water Management, 2018, 203, 87-96.	5.6	34
26	Rice evapotranspiration at the field and canopy scales under water-saving irrigation. Meteorology and Atmospheric Physics, 2018, 130, 227-240.	2.0	19
27	Inter-seasonal and cross-treatment variability in single-crop coefficients for rice evapotranspiration estimation and their validation under drying-wetting cycle conditions. Agricultural Water Management, 2018, 196, 154-161.	5.6	14
28	Impacts of Legal and Institutional Changes on Irrigation Management Performance: A Case of the Gezira Irrigation Scheme, Sudan. Water (Switzerland), 2018, 10, 1579.	2.7	11
29	Effects of Biochar Amendment on CO2 Emissions from Paddy Fields under Water-Saving Irrigation. International Journal of Environmental Research and Public Health, 2018, 15, 2580.	2.6	22
30	Effect of Biochar Amendment on Methane Emissions from Paddy Field under Water-Saving Irrigation. Sustainability, 2018, 10, 1371.	3.2	33
31	Effect of straw return on soil respiration and NEE of paddy fields under water-saving irrigation. PLoS ONE, 2018, 13, e0204597.	2.5	15
32	Soil degassing during watering: An overlooked soil N2O emission process. Environmental Pollution, 2018, 242, 257-263.	7.5	5
33	Vapor Condensation in Rice Fields and Its Contribution to Crop Evapotranspiration in the Subtropical Monsoon Climate of China. Journal of Hydrometeorology, 2018, 19, 1043-1057.	1.9	11
34	Effects of soil heat storage and phase shift correction on energy balance closure of paddy fields. Atmosfera, 2017, 30, 39-52.	0.8	34
35	Modeling rice evapotranspiration under water-saving irrigation by calibrating canopy resistance model parameters in the Penman-Monteith equation. Agricultural Water Management, 2017, 182, 55-66.	5.6	39
36	Effect of water management on soil respiration and NEE of paddy fields in Southeast China. Paddy and Water Environment, 2017, 15, 787-796.	1.8	18

#	Article	IF	CITATIONS
37	Validation of dual-crop coefficient method for calculation of rice evapotranspiration under drying–wetting cycle condition. Paddy and Water Environment, 2017, 15, 381-393.	1.8	10
38	Variations of carbon dioxide exchange in paddy field ecosystem under water-saving irrigation in Southeast China. Agricultural Water Management, 2016, 166, 42-52.	5.6	24
39	Reduction of Non-Point Source Pollution from Paddy Fields through Controlled Drainage in an Aquatic Vegetable Wetland-Ecological Ditch System. Irrigation and Drainage, 2016, 65, 734-740.	1.7	14
40	Controlled irrigation mitigates the annual integrative global warming potential of methane and nitrous oxide from the rice–winter wheat rotation systems in Southeast China. Ecological Engineering, 2016, 86, 239-246.	3.6	29
41	Spatial and temporal distribution characteristics of reference evapotranspiration trends in Karst area: a case study in Guizhou Province, China. Meteorology and Atmospheric Physics, 2016, 128, 677-688.	2.0	25
42	Influence of Watering Methods on the Short-Term Pulse Emissions of Nitrous Oxide from Disturbed Horticultural Soil. Communications in Soil Science and Plant Analysis, 2015, 46, 2688-2706.	1.4	1
43	Proper methods and its calibration for estimating reference evapotranspiration using limited climatic data in Southwestern China. Archives of Agronomy and Soil Science, 2015, 61, 415-426.	2.6	20
44	Water requirement pattern for tobacco and its response to water deficit in Guizhou Province. Water Science and Engineering, 2015, 8, 96-101.	3.2	4
45	Effect of controlled irrigation and drainage on nitrogen leaching losses from paddy fields. Paddy and Water Environment, 2015, 13, 303-312.	1.8	33
46	Effects of water saving irrigation and controlled release nitrogen fertilizer managements on nitrogen losses from paddy fields. Paddy and Water Environment, 2015, 13, 71-80.	1.8	60
47	Ammonia Volatilization Losses from Paddy Fields under Controlled Irrigation with Different Drainage Treatments. Scientific World Journal, The, 2014, 2014, 1-7.	2.1	16
48	Binding forms and availability of Cd and Cr in paddy soil under non-flooding controlled irrigation. Paddy and Water Environment, 2014, 12, 213-222.	1.8	14
49	Controlled irrigation and drainage of a rice paddy field reduced global warming potential of its gas emissions. Archives of Agronomy and Soil Science, 2014, 60, 151-161.	2.6	10
50	Coupled model of stomatal conductance–photosynthesis–transpiration for paddy rice under water-saving irrigation. Archives of Agronomy and Soil Science, 2014, 60, 163-181.	2.6	4
51	Influence of water management on the mobility and fate of copper in rice field soil. Journal of Soils and Sediments, 2013, 13, 1180-1188.	3.0	18
52	Lasting effects of controlled irrigation during rice-growing season on nitrous oxide emissions from winter wheat croplands in Southeast China. Paddy and Water Environment, 2013, 11, 583-591.	1.8	8
53	Prediction of daily reference evapotranspiration by a multiple regression method based on weather forecast data. Archives of Agronomy and Soil Science, 2013, 59, 1487-1501.	2.6	6
54	Gaseous losses of nitrogen by ammonia volatilization and nitrous oxide emissions from rice paddies with different irrigation management. Irrigation Science, 2013, 31, 983-994.	2.8	21

#	Article	IF	CITATIONS
55	Nitrogen Loss from Paddy Field with Different Water and Nitrogen Managements in Taihu Lake Region of China. Communications in Soil Science and Plant Analysis, 2013, 44, 2393-2407.	1.4	38
56	Solubility and Leaching Risks of Organic Carbon in Paddy Soils as Affected by Irrigation Managements. Scientific World Journal, The, 2013, 2013, 1-9.	2.1	11
57	Seasonal variations of CH4 and N2O emissions in response to water management of paddy fields located in Southeast China. Chemosphere, 2012, 89, 884-892.	8.2	146
58	Ammonia volatilization losses from a rice paddy with different irrigation and nitrogen managements. Agricultural Water Management, 2012, 104, 184-192.	5.6	187
59	Methane and nitrous oxide emissions from paddy field as affected by water-saving irrigation. Physics and Chemistry of the Earth, 2012, 53-54, 30-37.	2.9	98
60	Nitrogen and phosphorus leaching losses from paddy fields with different water and nitrogen managements. Paddy and Water Environment, 2011, 9, 333-342.	1.8	153
61	Field experiments on greenhouse gas emissions and nitrogen and phosphorus losses from rice paddy with efficient irrigation and drainage management. Science China Technological Sciences, 2011, 54, 1581-1587.	4.0	36
62	Variation in rice water requirement and its influencing factors in Poyang Lake basin during the past 30 years *. Irrigation and Drainage, 0, , .	1.7	1