Marc W Cadotte

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10417287/publications.pdf

Version: 2024-02-01

136	14,397	53	113
papers	citations	h-index	g-index
143 all docs	143 docs citations	143 times ranked	15417 citing authors

#	Article	IF	CITATIONS
1	Multiâ€trophic metacommunity interactions mediate asynchrony and stability in fluctuating environments. Ecological Monographs, 2022, 92, e1484.	2.4	12
2	Biodiversity responses to restoration across the Brazilian Atlantic Forest. Science of the Total Environment, 2022, 821, 153403.	3.9	12
3	A replicated study on the response of spider assemblages to regional and local processes. Ecological Monographs, 2022, 92, .	2.4	6
4	Coâ€designed ecological research for more effective management and conservation. Ecological Solutions and Evidence, 2022, 3, .	0.8	2
5	Phylogenetic and functional clustering illustrate the roles of adaptive radiation and dispersal filtering in jointly shaping lateâ€Quaternary mammal assemblages on oceanic islands. Ecology Letters, 2022, 25, 1250-1262.	3.0	16
6	Prioritizing terrestrial invasive alien plant species for management in urban ecosystems. Journal of Applied Ecology, 2022, 59, 872-883.	1.9	6
7	The latitudinal gradient in plant community assembly processes: AÂmetaâ€analysis. Ecology Letters, 2022, 25, 1711-1724.	3.0	20
8	Increasing effects of chronic nutrient enrichment on plant diversity loss and ecosystem productivity over time. Ecology, 2021, 102, e03218.	1.5	62
9	Mycorrhizal type influences plant density dependence and species richness across 15 temperate forests. Ecology, 2021, 102, e03259.	1.5	20
10	The list of vascular plants for the city of Toronto. Ecological Solutions and Evidence, 2021, 2, e12036.	0.8	4
11	Host plant environmental filtering drives foliar fungal community assembly in symptomatic leaves. Oecologia, 2021, 195, 737-749.	0.9	4
12	Individualâ€level leaf trait variation and correlation across biological and spatial scales. Ecology and Evolution, 2021, 11, 5344-5354.	0.8	7
13	Temporal changes in spatial variation: partitioning the extinction and colonisation components of beta diversity. Ecology Letters, 2021, 24, 1063-1072.	3.0	49
14	Trait hierarchies are stronger than trait dissimilarities in structuring spatial coâ€occurrence patterns of common tree species in a subtropical forest. Ecology and Evolution, 2021, 11, 7366-7377.	0.8	5
15	The dimensionality and structure of species trait spaces. Ecology Letters, 2021, 24, 1988-2009.	3.0	63
16	Scaleâ€dependent shifts in functional and phylogenetic structure of Mediterranean island plant communities over two centuries. Journal of Ecology, 2021, 109, 3513.	1.9	5
17	Elevational patterns of bird functional and phylogenetic structure in the central Himalaya. Ecography, 2021, 44, 1403-1417.	2.1	27
18	Invasion drives plant diversity loss through competition and ecosystem modification. Journal of Ecology, 2021, 109, 3587-3601.	1.9	33

#	Article	IF	Citations
19	Negative effects of nitrogen override positive effects of phosphorus on grassland legumes worldwide. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	40
20	Phylogenetic Diversity of Urban Floras in the Central Urals. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	4
21	Habitat loss-biodiversity relationships are influenced by assembly processes and the spatial configuration of area loss. Forest Ecology and Management, 2021, 496, 119452.	1.4	5
22	National-scale changes in crop diversity through the Anthropocene. Scientific Reports, 2021, 11, 20361.	1.6	4
23	Opposing community assembly patterns for dominant and nondominant plant species in herbaceous ecosystems globally. Ecology and Evolution, 2021, 11, 17744-17761.	0.8	8
24	Urbanization and plant invasion alter the structure of litter microarthropod communities. Journal of Animal Ecology, 2020, 89, 2496-2507.	1.3	14
25	Restorationâ€oriented forest management affects community assembly patterns of deadwoodâ€dependent organisms. Journal of Applied Ecology, 2020, 57, 2429-2440.	1.9	17
26	Niche Breadth: Causes and Consequences for Ecology, Evolution, and Conservation. Quarterly Review of Biology, 2020, 95, 179-214.	0.0	114
27	Species responses to changing precipitation depend on trait plasticity rather than trait means and intraspecific variation. Functional Ecology, 2020, 34, 2622-2633.	1.7	20
28	Invasive dominance and resident diversity: unpacking the impact of plant invasion on biodiversity and ecosystem function. Ecological Monographs, 2020, 90, e01425.	2.4	27
29	The mechanisms generating community phylogenetic patterns change with spatial scale. Oecologia, 2020, 193, 655-664.	0.9	9
30	Richness, phylogenetic diversity, and abundance all have positive effects on invader performance in an arid ecosystem. Ecosphere, 2020, 11, e03045.	1.0	16
31	Neighborhood interactions on seedling survival were greatly altered following an extreme winter storm. Forest Ecology and Management, 2020, 461, 117940.	1.4	11
32	Functional and phylogenetic diversity explain different components of diversity effects on biomass production. Oikos, 2020, 129, 1185-1195.	1.2	32
33	Do traits and phylogeny support congruent community diversity patterns and assembly inferences?. Journal of Ecology, 2019, 107, 2065-2077.	1.9	79
34	Nitrogen alters effects of disturbance on annual grassland community diversity: Implications for restoration. Journal of Ecology, 2019, 107, 2054-2064.	1.9	10
35	Plants alter their vertical root distribution rather than biomass allocation in response to changing precipitation. Ecology, 2019, 100, e02828.	1.5	86
36	Global evidence of positive biodiversity effects on spatial ecosystem stability in natural grasslands. Nature Communications, 2019, 10, 3207.	5.8	59

#	Article	IF	CITATIONS
37	Forest community assembly is driven by different strataâ€dependent mechanisms along an elevational gradient. Journal of Biogeography, 2019, 46, 2174-2187.	1.4	32
38	Lost in trait space: species-poor communities are inflexible in properties that drive ecosystem functioning. Advances in Ecological Research, 2019, , 91-131.	1.4	14
39	Greater than the sum of the parts: how the species composition in different forest strata influence ecosystem function. Ecology Letters, 2019, 22, 1449-1461.	3.0	51
40	Plant invasion alters trait composition and diversity across habitats. Ecology and Evolution, 2019, 9, 6199-6210.	0.8	55
41	Experimental dominant plant removal results in contrasting assembly for dominant and nonâ€dominant plants. Ecology Letters, 2019, 22, 1233-1242.	3.0	12
42	Assessing the utility of conserving evolutionary history. Biological Reviews, 2019, 94, 1740-1760.	4.7	65
43	Nonâ€random loss of phylogenetically distinct rare species degrades phylogenetic diversity in semiâ€natural grasslands. Journal of Applied Ecology, 2019, 56, 1419-1428.	1.9	13
44	Regional and global shifts in crop diversity through the Anthropocene. PLoS ONE, 2019, 14, e0209788.	1.1	53
45	Reply to: "Global conservation of phylogenetic diversity captures more than just functional diversity― Nature Communications, 2019, 10, 858.	5.8	13
46	Individualâ€based models of community assembly: Neighbourhood competition drives phylogenetic community structure. Journal of Ecology, 2019, 107, 735-746.	1.9	22
47	Warming affects foliar fungal diseases more than precipitation in a Tibetan alpine meadow. New Phytologist, 2019, 221, 1574-1584.	3.5	42
48	Preadaptation and Naturalization of Nonnative Species: Darwin's Two Fundamental Insights into Species Invasion. Annual Review of Plant Biology, 2018, 69, 661-684.	8.6	90
49	Herbivores safeguard plant diversity by reducing variability in dominance. Journal of Ecology, 2018, 106, 101-112.	1.9	40
50	Planting accelerates restoration of tropical forest but assembly mechanisms appear insensitive to initial composition. Journal of Applied Ecology, 2018, 55, 986-996.	1.9	22
51	On the extinction of the singleâ€authored paper: The causes and consequences of increasingly collaborative applied ecological research. Journal of Applied Ecology, 2018, 55, 1-4.	1.9	34
52	Biodiversity assessments: Origin matters. PLoS Biology, 2018, 16, e2006686.	2.6	52
53	Manipulating plant phylogenetic diversity for green roof ecosystem service delivery. Evolutionary Applications, 2018, 11, 2014-2024.	1.5	21
54	Biodiversity explains maximum variation in productivity under experimental warming, nitrogen addition, and grazing in mountain grasslands. Ecology and Evolution, 2018, 8, 10094-10112.	0.8	16

#	Article	IF	Citations
55	On the relationship between phylogenetic diversity and trait diversity. Ecology, 2018, 99, 1473-1479.	1.5	136
56	The importance of accounting for imperfect detection when estimating functional and phylogenetic community structure. Ecology, 2018, 99, 2103-2112.	1.5	38
57	Prioritizing phylogenetic diversity captures functional diversity unreliably. Nature Communications, 2018, 9, 2888.	5.8	144
58	The ecology and economics of restoration: when, what, where, and how to restore ecosystems. Ecology and Society, 2018, 23, .	1.0	58
59	Difficult decisions: Strategies for conservation prioritization when taxonomic, phylogenetic and functional diversity are not spatially congruent. Biological Conservation, 2018, 225, 128-133.	1.9	82
60	The Necessity of Multitrophic Approaches in Community Ecology. Trends in Ecology and Evolution, 2018, 33, 754-764.	4.2	105
61	Predicting loss of evolutionary history: Where are we?. Biological Reviews, 2017, 92, 271-291.	4.7	67
62	Solving environmental problems in the Anthropocene: the need to bring novel theoretical advances into the applied ecology fold. Journal of Applied Ecology, 2017, 54, 1-6.	1.9	30
63	Functional and phylogenetic structure of island bird communities. Journal of Animal Ecology, 2017, 86, 532-542.	1.3	73
64	Why phylogenies do not always predict ecological differences. Ecological Monographs, 2017, 87, 535-551.	2.4	148
65	Biodiversity and ecosystem function: making sense of numerous species interactions in multiâ€species communities. Ecology, 2017, 98, 1771-1778.	1.5	36
66	Functional traits explain ecosystem function through opposing mechanisms. Ecology Letters, 2017, 20, 989-996.	3.0	273
67	Functional Rarity: The Ecology of Outliers. Trends in Ecology and Evolution, 2017, 32, 356-367.	4.2	258
68	Should Environmental Filtering be Abandoned?. Trends in Ecology and Evolution, 2017, 32, 429-437.	4.2	509
69	Trait dimensionality and population choice alter estimates of phenotypic dissimilarity. Ecology and Evolution, 2017, 7, 2273-2285.	0.8	9
70	Non-native species in urban environments: patterns, processes, impacts and challenges. Biological Invasions, 2017, 19, 3461-3469.	1.2	190
71	A Common Toolbox to Understand, Monitor or Manage Rarity? A Response to Carmona et al Trends in Ecology and Evolution, 2017, 32, 891-893.	4.2	4
72	Explaining ecosystem multifunction with evolutionary models. Ecology, 2017, 98, 3175-3187.	1.5	14

#	Article	IF	CITATIONS
73	Are urban systems beneficial, detrimental, or indifferent for biological invasion?. Biological Invasions, 2017, 19, 3489-3503.	1.2	117
74	Embracing the Nonindependence of the Environmental Filter: A Reply to Responses. Trends in Ecology and Evolution, 2017, 32, 886-887.	4.2	5
75	Out of the shadows: multiple nutrient limitations drive relationships among biomass, light and plant diversity. Functional Ecology, 2017, 31, 1839-1846.	1.7	55
76	A guide to phylogenetic metrics for conservation, community ecology and macroecology. Biological Reviews, 2017, 92, 698-715.	4.7	570
77	Conservation of Species- and Trait-Based Modeling Network Interactions in Extremely Acidic Microbial Community Assembly. Frontiers in Microbiology, 2017, 8, 1486.	1.5	10
78	Contrasting patterns of lichen functional diversity and species richness across an elevation gradient. Ecography, 2016, 39, 689-698.	2.1	93
79	Phylogenetic conservatism and climate factors shape flowering phenology in alpine meadows. Oecologia, 2016, 182, 419-428.	0.9	20
80	Phylogenetic ecology and the greening of cities. Journal of Applied Ecology, 2016, 53, 1470-1476.	1.9	29
81	Climate modifies response of non-native and native species richness to nutrient enrichment. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150273.	1.8	34
82	Transforming ecosystems: When, where, and how to restore contaminated sites. Integrated Environmental Assessment and Management, 2016, 12, 273-283.	1.6	24
83	Addition of multiple limiting resources reduces grassland diversity. Nature, 2016, 537, 93-96.	13.7	355
84	Deconstructing the relationships between phylogenetic diversity and ecology: a case study on ecosystem functioning. Ecology, 2016, 97, 2212-2222.	1.5	34
85	Convergence and divergence in a longâ€ŧerm oldâ€field succession: the importance of spatial scale and species abundance. Ecology Letters, 2016, 19, 1101-1109.	3.0	119
86	Functional response of lignicolous fungal guilds to bark beetle deforestation. Ecological Indicators, 2016, 65, 149-160.	2.6	48
87	The effects of phylogenetic relatedness on invasion success and impact: deconstructing Darwin's naturalisation conundrum. Ecology Letters, 2015, 18, 1285-1292.	3.0	100
88	Species colonisation, not competitive exclusion, drives community overdispersion over longâ€ŧerm succession. Ecology Letters, 2015, 18, 964-973.	3.0	103
89	Phylogenetic diversity and productivity: gauging interpretations from experiments that do not manipulate phylogenetic diversity. Functional Ecology, 2015, 29, 1603-1606.	1.7	31
90	Phylogenetic diversity–ecosystem function relationships are insensitive to phylogenetic edge lengths. Functional Ecology, 2015, 29, 718-723.	1.7	20

#	Article	IF	Citations
91	Predicting communities from functional traits. Trends in Ecology and Evolution, 2015, 30, 510-511.	4.2	138
92	<i>pez</i> : phylogenetics for the environmental sciences. Bioinformatics, 2015, 31, 2888-2890.	1.8	146
93	Phylogenetic turnover patterns consistent with niche conservatism in montane plant species. Journal of Ecology, 2015, 103, 742-749.	1.9	35
94	Phylogeny in the Service of Ecological Restoration. American Journal of Botany, 2015, 102, 647-648.	0.8	59
95	ls successional research nearing its climax? New approaches for understanding dynamic communities. Functional Ecology, 2015, 29, 154-164.	1.7	183
96	Contrasting effects of phylogenetic relatedness on plant invader success in experimental grassland communities. Journal of Applied Ecology, 2015, 52, 89-99.	1.9	40
97	Management by proxy? The use of indices in applied ecology. Journal of Applied Ecology, 2015, 52, 1-6.	1.9	133
98	Explaining maximum variation in productivity requires phylogenetic diversity and single functional traits. Ecology, 2015, 96, 176-183.	1.5	56
99	Including distantly related taxa can bias phylogenetic tests. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E536.	3.3	12
100	Unifying measures of biodiversity: understanding when richness and phylogenetic diversity should be congruent. Diversity and Distributions, 2013, 19, 845-854.	1.9	138
101	Experimental evidence that evolutionarily diverse assemblages result in higher productivity. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 8996-9000.	3.3	208
102	Diversity of plant evolutionary lineages promotes arthropod diversity. Ecology Letters, 2012, 15, 1308-1317.	3.0	108
103	Incorporating Geographical and Evolutionary Rarity into Conservation Prioritization. Conservation Biology, 2012, 26, 593-601.	2.4	60
104	Gauging the impact of meta-analysis on ecology. Evolutionary Ecology, 2012, 26, 1153-1167.	0.5	55
105	Phylogenetic diversity promotes ecosystem stability. Ecology, 2012, 93, S223.	1.5	372
106	Ensuring applied ecology has impact. Journal of Applied Ecology, 2012, 49, 1-5.	1.9	29
107	Phylogenetic diversity and the functioning of ecosystems. Ecology Letters, 2012, 15, 637-648.	3.0	432
108	Phylogenetically diverse grasslands are associated with pairwise interspecific processes that increase biomass. Ecology, 2011, 92, 1385-1392.	1.5	43

#	Article	IF	Citations
109	Quantifying Biodiversity: Does It Matter What We Measure?., 2011,, 43-60.		18
110	Linking community and ecosystem dynamics through spatial ecology. Ecology Letters, 2011, 14, 313-323.	3.0	213
111	Beyond species: functional diversity and the maintenance of ecological processes and services. Journal of Applied Ecology, 2011, 48, 1079-1087.	1.9	1,545
112	The new diversity: management gains through insights into the functional diversity of communities. Journal of Applied Ecology, 2011, 48, 1067-1069.	1.9	62
113	Phylogenetic Patterns of Colonization and Extinction in Experimentally Assembled Plant Communities. PLoS ONE, 2011, 6, e19363.	1.1	30
114	Rarest of the rare: advances in combining evolutionary distinctiveness and scarcity to inform conservation at biogeographical scales. Diversity and Distributions, 2010, 16, 376-385.	1.9	191
115	Phylogenetic patterns differ for native and exotic plant communities across a richness gradient in Northern California. Diversity and Distributions, 2010, 16, 892-901.	1.9	56
116	Phylogenetic diversity metrics for ecological communities: integrating species richness, abundance and evolutionary history. Ecology Letters, 2010, 13, 96-105.	3.0	340
117	Using Phylogenetic, Functional and Trait Diversity to Understand Patterns of Plant Community Productivity. PLoS ONE, 2009, 4, e5695.	1.1	558
118	Plant genetics shapes inquiline community structure across spatial scales. Ecology Letters, 2009, 12, 285-292.	3.0	43
119	Phylogenetic relatedness and plant invader success across two spatial scales. Diversity and Distributions, 2009, 15, 481-488.	1.9	89
120	CONSEQUENCES OF DOMINANCE: A REVIEW OF EVENNESS EFFECTS ON LOCAL AND REGIONAL ECOSYSTEM PROCESSES. Ecology, 2008, 89, 1510-1520.	1.5	720
121	Evolutionary history and the effect of biodiversity on plant productivity. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 17012-17017.	3.3	503
122	Impacts of plant diversity on biomass production increase through time because of species complementarity. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 18123-18128.	3.3	1,175
123	Core and Satellite Species in Degraded Habitats: an Analysis Using Malagasy Tree Communities. Biodiversity and Conservation, 2007, 16, 2515-2529.	1.2	8
124	Evolutionary and ecological influences of plant invader success in the flora of Ontario. Ecoscience, 2006, 13, 388-395.	0.6	40
125	METACOMMUNITY INFLUENCES ON COMMUNITY RICHNESS AT MULTIPLE SPATIAL SCALES: A MICROCOSM EXPERIMENT. Ecology, 2006, 87, 1008-1016.	1.5	99
126	Ecological Patterns and Biological Invasions: Using Regional Species Inventories in Macroecology. Biological Invasions, 2006, 8, 809-821.	1.2	129

#	Article	IF	CITATIONS
127	The effects of resource enrichment, dispersal, and predation on local and metacommunity structure. Oecologia, 2006, 149, 150-157.	0.9	47
128	Darwin to Elton: early ecology and the problem of invasive species. , 2006, , 15-33.		17
129	Dispersal, spatial scale, and species diversity in a hierarchically structured experimental landscape. Ecology Letters, 2005, 8, 548-557.	3.0	156
130	Life-history correlates of plant invasiveness at regional and continental scales. Ecology Letters, 2005, 8, 1066-1074.	3.0	296
131	The ecology of biological invasions: past, present and future. , 2005, , 19-43.		33
132	Constructing Nature: Laboratory Models as Necessary Tools for Investigating Complex Ecological Communities. Advances in Ecological Research, 2005, , 333-353.	1.4	46
133	Phylogenetic diversity and ecological features in the Egyptian flora. Biodiversity and Conservation, 2002, 11, 1809-1824.	1.2	17
134	Quantifying the invasiveness of species. NeoBiota, 0, 21, 7-27.	1.0	63
135	Heterogeneity in patterns of survival of the invasive species Ipomoea carnea in urban habitats along the Egyptian Nile Delta. NeoBiota, 0, 33, 1-17.	1.0	8
136	The application of selected invasion frameworks to urban ecosystems. NeoBiota, 0, 62, 365-386.	1.0	21