
Fernando Garces

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10416786/publications.pdf Version: 2024-02-01

FEDNANDO CADCES

#	Article	IF	CITATIONS
1	Enhancing the Prefusion Conformational Stability of SARS-CoV-2 Spike Protein Through Structure-Guided Design. Frontiers in Immunology, 2021, 12, 660198.	2.2	28
2	Molecular Insight into Recognition of the CGRPR Complex by Migraine Prevention Therapy Aimovig (Erenumab). Cell Reports, 2020, 30, 1714-1723.e6.	2.9	34
3	Efficient Single-Strand Break Repair Requires Binding to Both Poly(ADP-Ribose) and DNA by the Central BRCT Domain of XRCC1. Cell Reports, 2019, 26, 573-581.e5.	2.9	58
4	Structure and immunogenicity of a stabilized HIV-1 envelope trimer based on a group-M consensus sequence. Nature Communications, 2019, 10, 2355.	5.8	116
5	The Chimpanzee SIV Envelope Trimer: Structure and Deployment as an HIV Vaccine Template. Cell Reports, 2019, 27, 2426-2441.e6.	2.9	35
6	Glycine Substitution at Helix-to-Coil Transitions Facilitates the Structural Determination of a Stabilized Subtype C HIV Envelope Glycoprotein. Immunity, 2017, 46, 792-803.e3.	6.6	96
7	The path toward an HIV-1 vaccine. Porto Biomedical Journal, 2017, 2, 150-152.	0.4	1
8	Elicitation of Neutralizing Antibodies Targeting the V2 Apex of the HIV Envelope Trimer in a Wild-Type Animal Model. Cell Reports, 2017, 21, 222-235.	2.9	58
9	Improving the Immunogenicity of Native-like HIV-1 Envelope Trimers by Hyperstabilization. Cell Reports, 2017, 20, 1805-1817.	2.9	171
10	Design and crystal structure of a native-like HIV-1 envelope trimer that engages multiple broadly neutralizing antibody precursors in vivo. Journal of Experimental Medicine, 2017, 214, 2573-2590.	4.2	151
11	Key gp120 Glycans Pose Roadblocks to the Rapid Development of VRC01-Class Antibodies in an HIV-1-Infected Chinese Donor. Immunity, 2016, 44, 939-950.	6.6	85
12	Early Antibody Lineage Diversification and Independent Limb Maturation Lead to Broad HIV-1 Neutralization Targeting the Env High-Mannose Patch. Immunity, 2016, 44, 1215-1226.	6.6	138
13	HIV Vaccine Design to Target Germline Precursors of Glycan-Dependent Broadly Neutralizing Antibodies. Immunity, 2016, 45, 483-496.	6.6	335
14	Structural flexibility at a major conserved antibody target on hepatitis C virus E2 antigen. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12768-12773.	3.3	78
15	Affinity Maturation of a Potent Family of HIV Antibodies Is Primarily Focused on Accommodating or Avoiding Glycans. Immunity, 2015, 43, 1053-1063.	6.6	200
16	Complete epitopes for vaccine design derived from a crystal structure of the broadly neutralizing antibodies PGT128 and 8ANC195 in complex with an HIV-1 Env trimer. Acta Crystallographica Section D: Biological Crystallography, 2015, 71, 2099-2108.	2.5	69
17	Two Classes of Broadly Neutralizing Antibodies within a Single Lineage Directed to the High-Mannose Patch of HIV Envelope. Journal of Virology, 2015, 89, 1105-1118.	1.5	80
18	Structural Evolution of Glycan Recognition by a Family of Potent HIV Antibodies. Cell, 2014, 159, 69-79.	13.5	161

Fernando Garces

#	Article	IF	CITATIONS
19	The Structural Basis for Substrate Recognition by Mammalian Polynucleotide Kinase 3′ Phosphatase. Molecular Cell, 2011, 44, 385-396.	4.5	32
20	The UlaG protein family defines novel structural and functional motifs grafted on an ancient RNase fold. BMC Evolutionary Biology, 2011, 11, 273.	3.2	7
21	Molecular Architecture of the Mn2+-dependent Lactonase UlaG Reveals an RNase-like Metallo-Î ² -lactamase Fold and a Novel Quaternary Structure. Journal of Molecular Biology, 2010, 398, 715-729.	2.0	31
22	Overproduction, crystallization and preliminary X-ray analysis of the putative <scp>L</scp> -ascorbate-6-phosphate lactonase UlaG from <i>Escherichia coli</i> . Acta Crystallographica Section F: Structural Biology Communications, 2008, 64, 36-38.	0.7	3
23	Quaternary Structural Transitions in the DeoR-Type Repressor UlaR Control Transcriptional Readout from the <scp>I</scp> -Ascorbate Utilization Regulon in <i>Escherichia coli</i> . Biochemistry, 2008, 47, 11424-11433.	1.2	30
24	The <i>yiaKLX1X2PQRS</i> and <i>ulaABCDEFG</i> Gene Systems Are Required for the Aerobic Utilization of <scp>l</scp> -Ascorbate in <i>Klebsiella pneumoniae</i> Strain 13882 with <scp>l</scp> -Ascorbate-6-Phosphate as the Inducer. Journal of Bacteriology, 2008, 190, 6615-6624.	1.0	21
25	Aerobic l-ascorbate metabolism and associated oxidative stress in Escherichia coli. Microbiology (United Kingdom), 2007, 153, 3399-3408.	0.7	27