List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1041569/publications.pdf Version: 2024-02-01

<u> Fιιςλ Vλιι Ã @ς</u>

#	Article	IF	CITATIONS
1	One-Step Electrodeposition of Nanosized Cobalt Oxy/Hydroxide Composites Obtained from Deep Eutectic Solvent as Multifunctional Catalysts. Journal of the Electrochemical Society, 2018, 165, D266-D272.	2.9	4
2	Magnetic Actuation of Multifunctional Nanorobotic Platforms to Induce Cancer Cell Death. Advanced Biology, 2018, 2, 1700220.	3.0	20
3	Novel NiFe/NiFe-LDH composites as competitive catalysts for clean energy purposes. Applied Surface Science, 2018, 447, 107-116.	6.1	29
4	Co-Ni-carbon flexible composite fibres for directional magnetic actuation. Materials and Design, 2018, 141, 9-16.	7.0	7
5	Microemulsion-Based One-Step Electrochemical Fabrication of Mesoporous Catalysts. Catalysts, 2018, 8, 395.	3.5	11
6	Spectroelectrochemical monitoring of contaminants during the electrochemical filtration process using free-standing carbon nanotube filters. Electrochimica Acta, 2018, 280, 17-24.	5.2	4
7	Advanced electrochemical synthesis of multicomponent metallic nanorods and nanowires: Fundamentals and applications. Applied Materials Today, 2018, 12, 207-234.	4.3	57
8	Silver nanoparticles/free-standing carbon nanotube Janus membranes Electrochimica Acta, 2017, 243, 349-356.	5.2	5
9	Electrochemical synthesis of Fe-W and Fe-W-P magnetic amorphous films and Fe-W nanowires. Surface and Coatings Technology, 2017, 324, 80-84.	4.8	11
10	Magnetically-actuated mesoporous nanowires for enhanced heterogeneous catalysis. Applied Catalysis B: Environmental, 2017, 217, 81-91.	20.2	26
11	Nanostructured materials for photodynamic therapy: synthesis, characterization and in vitro activity. RSC Advances, 2017, 7, 16963-16976.	3.6	19
12	New electrolytic bath for electrodeposition of protective binary FeMo and ternary FeMoP films. Journal of Alloys and Compounds, 2017, 695, 319-328.	5.5	7
13	Three-dimensional nucleation with diffusion controlled growth: A comparative study of electrochemical phase formation from aqueous and deep eutectic solvents. Journal of Electroanalytical Chemistry, 2017, 793, 119-125.	3.8	37
14	Janus Electrochemistry: Asymmetric Functionalization in One Step. ACS Applied Materials & Interfaces, 2017, 9, 35404-35410.	8.0	7
15	Electrochemically synthesized nanostructures for the manipulation of cells: Biohybrid micromotors. Electrochemistry Communications, 2017, 85, 27-31.	4.7	7
16	Magnetic Propulsion of Recyclable Catalytic Nanocleaners for Pollutant Degradation. ACS Applied Materials & Interfaces, 2017, 9, 23859-23868.	8.0	35
17	Effective ionic-liquid microemulsion based electrodeposition of mesoporous Co–Pt films for methanol oxidation catalysis in alkaline media. Journal of Materials Chemistry A, 2016, 4, 7805-7814.	10.3	28
18	Sono-electrodeposition transfer of micro-scale copper patterns on to A7 substrates using a mask-less method. Electrochimica Acta, 2016, 207, 207-217.	5.2	4

#	Article	IF	CITATIONS
19	Effective new method for synthesizing Pt and CoPt ₃ mesoporous nanorods. New catalysts for ethanol electro-oxidation in alkaline medium. RSC Advances, 2016, 6, 47931-47939.	3.6	10
20	Highly efficient electrochemical and chemical hydrogenation of 4-nitrophenol using recyclable narrow mesoporous magnetic CoPt nanowires. Journal of Materials Chemistry A, 2016, 4, 15676-15687.	10.3	33
21	Magnetic Mesoporous Nanocarriers for Drug Delivery with Improved Therapeutic Efficacy. Advanced Functional Materials, 2016, 26, 6601-6611.	14.9	28
22	Influence of the composition and crystalline phase of electrodeposited CoNi films in the preparation of CoNi oxidized surfaces as electrodes for urea electro-oxidation. Applied Surface Science, 2016, 360, 816-825.	6.1	41
23	Electrochemical preparation and characterization of magnetic core–shell nanowires for biomedical applications. Electrochemistry Communications, 2016, 63, 18-21.	4.7	10
24	Electrochemical Control of the Core-Shell Cobalt-Platinum Nanoparticles. , 2016, , 769-782.		0
25	Facile electrochemical synthesis, using microemulsions with ionic liquid, of highly mesoporous CoPt nanorods with enhanced electrocatalytic performance for clean energy. International Journal of Hydrogen Energy, 2015, 40, 8062-8070.	7.1	25
26	Electrochemical growth of CoNi and Pt–CoNi soft magnetic composites on an alkanethiol monolayer-modified ITO substrate. Physical Chemistry Chemical Physics, 2015, 17, 16575-16586.	2.8	4
27	Electrochemical deposition of CoNi micro/nanostructures as new materials for electrochemical sensing of glucose. Materials Letters, 2015, 159, 154-158.	2.6	25
28	Novel electrodeposition media to synthesize CoNi-Pt Core@Shell stable mesoporous nanorods with very high active surface for methanol electro-oxidation. Electrochimica Acta, 2015, 174, 630-639.	5.2	29
29	Electrochemical synthesis of Co7Ni3 and Co6Ni4 nanorods with controlled crystalline phase. Application to methanol electro-oxidation. Journal of Alloys and Compounds, 2015, 646, 669-674.	5.5	11
30	Advances in Copper Electrodeposition in Chloride Excess. A Theoretical and Experimental Approach. Electrochimica Acta, 2015, 164, 187-195.	5.2	27
31	Alginate electrodeposition onto three-dimensional porous Co–Ni films as drug delivery platforms. Physical Chemistry Chemical Physics, 2015, 17, 1630-1636.	2.8	13
32	Electrochemical Control of the Core-Shell Cobalt-Platinum Nanoparticles. , 2015, , 1-11.		0
33	3D distribution of magnetic CoNi alloy nanoparticles electrodeposited on vertically aligned MWCNT showing exceptional coercive field. Materials Letters, 2014, 124, 8-11.	2.6	2
34	Green Electrochemical Template Synthesis of CoPt Nanoparticles with Tunable Size, Composition, and Magnetism from Microemulsions Using an Ionic Liquid (bmimPF ₆). ACS Nano, 2014, 8, 4630-4639.	14.6	37
35	Copper electrodeposition in a deep eutectic solvent. First stages analysis considering Cu(I) stabilization in chloride media. Electrochimica Acta, 2014, 123, 285-295.	5.2	53
36	Electrosynthesis method of CoPt nanoparticles in percolated microemulsions. RSC Advances, 2014, 4, 34281-34287.	3.6	5

#	Article	IF	CITATIONS
37	One-step electrodeposition from ionic liquid and water as a new method for 2D composite preparation. Electrochemistry Communications, 2014, 46, 79-83.	4.7	5
38	Conditions that bicontinuous microemulsions must fulfill to be used as template for electrodeposition of nanostructures. Journal of Electroanalytical Chemistry, 2014, 720-721, 101-106.	3.8	7
39	Electrocatalytic oxidation of methanol on CoNi electrodeposited materials. International Journal of Hydrogen Energy, 2014, 39, 6705-6713.	7.1	49
40	Electrochemical Synthesis of Mesoporous CoPt Nanowires for Methanol Oxidation. Nanomaterials, 2014, 4, 189-202.	4.1	16
41	Conductive microemulsions for template CoNi electrodeposition. Physical Chemistry Chemical Physics, 2013, 15, 14653.	2.8	11
42	Ternary PtCoNi functional films prepared by electrodeposition: Magnetic and electrocatalytic properties. Electrochimica Acta, 2013, 109, 187-194.	5.2	11
43	First stages of silver electrodeposition in a deep eutectic solvent. Comparative behavior in aqueous medium. Electrochimica Acta, 2013, 112, 149-158.	5.2	51
44	Electrochemical synthesis of Co–Ag/Ag multilayered nanowires for GMR applications. Materials Letters, 2013, 111, 101-103.	2.6	3
45	Microemulsions for obtaining nanostructures by means of electrodeposition method. Electrochemistry Communications, 2013, 27, 14-18.	4.7	17
46	Electrochemical growth of CoPt nanowires of different aspect ratio and their magnetic properties. Journal of Electroanalytical Chemistry, 2013, 689, 69-75.	3.8	14
47	Electrochemical control of composition and crystalline structure of CoNi nanowires and films prepared potentiostatically from a single bath. Journal of Electroanalytical Chemistry, 2013, 703, 88-96.	3.8	13
48	Magnetic CoPt (60–70 wt%Pt) microstructures fabricated by the electrochemical method. Journal of Micromechanics and Microengineering, 2012, 22, 055016.	2.6	7
49	Electrodeposition of SmCo Nanostructures in Deep Eutectic Solvent. ECS Transactions, 2012, 41, 3-9.	0.5	22
50	Electrodeposited CoPt films from a deep eutectic solvent. Surface and Coatings Technology, 2012, 206, 4439-4448.	4.8	40
51	Design and electrochemical preparation of inductive copper coils for magnetic particles detection. Sensors and Actuators B: Chemical, 2012, 173, 737-744.	7.8	5
52	Measurement of the giant magnetoresistance effect in cobalt–silver magnetic nanostructures: nanoparticles. Nanotechnology, 2012, 23, 405701.	2.6	11
53	Photo-controllable electronic switches based on azopyridine derivatives. Chemical Communications, 2012, 48, 9080.	4.1	15
54	Measurement of the Giant Magnetoresistance Effect in Cobalt–Silver Magnetic Nanostructures: Nanowires. Journal of Physical Chemistry C, 2012, 116, 12250-12257.	3.1	9

#	Article	IF	CITATIONS
55	Developing plating baths for the production of reflective Ni–Cu films. Electrochimica Acta, 2012, 62, 381-389.	5.2	28
56	Electrodeposition of CoNiP films with modulated magnetic behaviour. Transactions of the Institute of Metal Finishing, 2011, 89, 194-197.	1.3	4
57	Giant magnetoresistance in electrodeposited Co–Ag granular films. Materials Letters, 2011, 65, 1865-1867.	2.6	15
58	Nanowires of NiCo/barium ferrite magnetic composite by electrodeposition. Materials Letters, 2011, 65, 2765-2768.	2.6	11
59	Nanocrystalline CoP coatings prepared by different electrodeposition techniques. Materials Letters, 2011, 65, 2849-2851.	2.6	30
60	Using deep eutectic solvents to electrodeposit CoSm films and nanowires. Materials Letters, 2011, 65, 3597-3600.	2.6	55
61	CoPt nanoscale structures with different geometry prepared by electrodeposition for modulation of their magnetic properties. Electrochimica Acta, 2011, 56, 8232-8238.	5.2	23
62	Electrodeposition of Co, Sm and SmCo from a Deep Eutectic Solvent. Journal of Electroanalytical Chemistry, 2011, 658, 18-24.	3.8	154
63	Adsorption of organic layers over electrodeposited magnetite (Fe3O4) thin films. Electrochimica Acta, 2011, 56, 4087-4091.	5.2	9
64	Magnetic properties of nanocrystalline CoPt electrodeposited films. Influence of P incorporation. Journal of Solid State Electrochemistry, 2010, 14, 2225-2233.	2.5	16
65	Synthesis and structural, magnetic and electrochemical characterization of PtCo nanoparticles prepared by water-in-oil microemulsion. Journal of Nanoparticle Research, 2010, 12, 1149-1159.	1.9	13
66	Synthesis and characterization of Co@Ag core–shell nanoparticles. Journal of Nanoparticle Research, 2010, 12, 2189-2199.	1.9	39
67	Modification of magnetic and structural properties of Co and Co–Ag electrodeposits by sulphur incorporation. Materials Chemistry and Physics, 2010, 122, 463-469.	4.0	20
68	Design and characterization of a magnetic digital flow regulator. Sensors and Actuators A: Physical, 2010, 162, 107-115.	4.1	10
69	Electrochemical preparation and magnetic properties of submicrometric core–shell CoPt–CoNi particles. Journal of Electroanalytical Chemistry, 2010, 650, 36-40.	3.8	1
70	Temperature dependence of GMR and effect of annealing on electrodeposited Co–Ag granular films. Journal of Magnetism and Magnetic Materials, 2010, 322, 3186-3191.	2.3	18
71	Electrochemical preparation and characterisation of CoPt magnetic particles. Electrochemistry Communications, 2010, 12, 132-136.	4.7	14
72	Influence of bath temperature and bath composition on Co–Ag electrodeposition. Electrochimica Acta, 2010, 55, 5760-5767.	5.2	9

#	Article	IF	CITATIONS
73	Electrocodeposition of CoNi/barium ferrite using a forced flow cell. Surface and Coatings Technology, 2010, 205, 195-199.	4.8	13
74	Magnetic micromechanical structures based on CoNi electrodeposited alloys. Journal of Micromechanics and Microengineering, 2010, 20, 125017.	2.6	9
75	Relevant GMR in As-Deposited Coâ^'Ag Electrodeposits: Chronoamperometric Preparation. Journal of Physical Chemistry C, 2010, 114, 12346-12354.	3.1	10
76	Electrodeposition of CoNi and CoNiP alloys in sulphamate electrolytes. Journal of Alloys and Compounds, 2010, 503, 454-459.	5.5	34
77	Relevant GMR in As-Deposited Coâ^'Ag Electrodeposits: Pulse Plating Deposition. Journal of Physical Chemistry C, 2010, 114, 9146-9152.	3.1	8
78	Modulation of magnetic and structural properties of cobalt thin films by means of electrodeposition. Journal of Applied Electrochemistry, 2009, 39, 233-240.	2.9	36
79	Ternary CoPtP electrodeposition process: Structural and magnetic properties of the deposits. Journal of Electroanalytical Chemistry, 2009, 627, 69-75.	3.8	13
80	Evolution of magnetic and structural properties from Ag nanolayers to several microns Co–Ag deposits prepared by electrodeposition. Journal of Electroanalytical Chemistry, 2009, 635, 63-68.	3.8	19
81	Metastable Structures of Co and Coâ^'Ag Detected in Electrodeposited Coatings. Crystal Growth and Design, 2009, 9, 1671-1676.	3.0	11
82	Preparation of Co–Ag films by direct and pulse electrochemical methods. Journal of Electroanalytical Chemistry, 2008, 615, 213-221.	3.8	15
83	Design, fabrication and characterization of an externally actuated ON/OFF microvalve. Sensors and Actuators A: Physical, 2008, 147, 600-606.	4.1	31
84	Influence of a magnetic field during the CoNi electrodeposition in the presence of magnetic nanoparticles. Journal of Electroanalytical Chemistry, 2008, 615, 117-123.	3.8	14
85	Optimisation of copper electrodeposition processes for Si technology based inductive microsystems. Journal of Electroanalytical Chemistry, 2008, 619-620, 176-182.	3.8	7
86	Magnetically actuated microvalve for disposable drug infusor. , 2007, , .		2
87	Electrodeposition of Co–Ag films and compositional determination by electrochemical methods. Analytica Chimica Acta, 2007, 602, 187-194.	5.4	16
88	Enhanced magnetism in electrodeposited-based CoNi composites containing high percentage of micron hard-magnetic particles. Electrochemistry Communications, 2007, 9, 1755-1760.	4.7	17
89	Electrodeposition of silver as a precursor matrix of magnetoresistive materials. Materials Letters, 2007, 61, 1671-1674.	2.6	8
90	Electrodeposition of copper–magnetite magnetic composite films. Journal of Applied Electrochemistry, 2007, 37, 575-582.	2.9	15

#	Article	IF	CITATIONS
91	First stages of barium ferrite microparticles entrapment in the electrodeposition of CoNi films. Journal of Electroanalytical Chemistry, 2007, 604, 41-47.	3.8	12
92	Molybdenum alloy electrodeposits for magnetic actuation. Electrochimica Acta, 2006, 51, 3214-3222.	5.2	30
93	Modulation of the magnetic properties of CoNi coatings by electrodeposition in the presence of a redox cationic surfactant. Applied Surface Science, 2006, 253, 2964-2968.	6.1	14
94	Study and preparation of silver electrodeposits at negative potentials. Journal of Electroanalytical Chemistry, 2006, 594, 89-95.	3.8	27
95	Magnetoresistive granular Cu–Co–Ni coatings prepared by electrodeposition. Journal of Electroanalytical Chemistry, 2006, 596, 87-94.	3.8	16
96	Use of the reverse pulse plating method to improve the properties of cobalt–molybdenum electrodeposits. Surface and Coatings Technology, 2006, 201, 2351-2357.	4.8	55
97	Influence of a cationic surfactant in the properties of cobalt–nickel electrodeposits. Electrochimica Acta, 2006, 51, 5703-5709.	5.2	32
98	An approach to the first stages of cobalt–nickel–molybdenum electrodeposition in sulphate–citrate medium. Journal of Electroanalytical Chemistry, 2005, 580, 222-230.	3.8	33
99	Intermediate molybdenum oxides involved in binary and ternary induced electrodeposition. Journal of Electroanalytical Chemistry, 2005, 580, 238-244.	3.8	31
100	Structural, magnetic and corrosion properties of electrodeposited cobalt–nickel–molybdenum alloys. Electrochemistry Communications, 2005, 7, 275-281.	4.7	34
101	Magnetic composites CoNi–barium ferrite prepared by electrodeposition. Electrochemistry Communications, 2005, 7, 1225-1231.	4.7	29
102	Developing plating baths for the production of cobalt–molybdenum films. Surface and Coatings Technology, 2005, 197, 238-246.	4.8	39
103	Electrodeposition of Co–Ni and Co–Ni–Cu systems in sulphate–citrate medium. Electrochimica Acta, 2005, 51, 146-153.	5.2	106
104	Electrodeposition of cobalt based alloys for MEMS applications. Transactions of the Institute of Metal Finishing, 2005, 83, 248-254.	1.3	13
105	Annealing of Electroplated Co-Cu Films to Induce Magnetoresistance. Journal of the Electrochemical Society, 2004, 151, C731.	2.9	13
106	Electrodeposition for obtaining homogeneous or heterogeneous cobalt-copper films. Journal of Solid State Electrochemistry, 2004, 8, 82-88.	2.5	18
107	Properties of Co-Mo coatings obtained by electrodeposition at pH�6.6. Journal of Solid State Electrochemistry, 2004, 8, 497-504.	2.5	47
108	Electrodeposition of soft-magnetic cobalt–molybdenum coatings containing low molybdenum percentages. Journal of Electroanalytical Chemistry, 2004, 568, 29-36.	3.8	43

#	Article	IF	CITATIONS
109	Microstructures of soft-magnetic cobalt–molybdenum alloy obtained by electrodeposition on seed layer/silicon substrates. Electrochemistry Communications, 2004, 6, 853-859.	4.7	32
110	Extracting deposition parameters for cobalt–molybdenum alloy from potentiostatic current transients. Physical Chemistry Chemical Physics, 2004, 6, 1340-1344.	2.8	13
111	Title is missing!. Journal of Applied Electrochemistry, 2003, 33, 245-252.	2.9	57
112	Electrochemical behaviour and physical properties of Cu/Co multilayers. Electrochimica Acta, 2003, 48, 1005-1013.	5.2	19
113	Influence of the bath composition and the pH on the induced cobalt–molybdenum electrodeposition. Journal of Electroanalytical Chemistry, 2003, 556, 137-145.	3.8	81
114	A model for potentiostatic current transients during alloy deposition: cobalt–molybdenum alloy. Journal of Electroanalytical Chemistry, 2003, 557, 9-18.	3.8	10
115	Electrodeposition under a time-dependent boundary condition. Thin Solid Films, 2003, 440, 45-53.	1.8	5
116	Theoretical J–t transients for binary alloys. Different deposition regimes. Physical Chemistry Chemical Physics, 2003, 5, 3226-3233.	2.8	1
117	Development and Characterization of Co-Ni Alloys for Microsystems Applications. Journal of the Electrochemical Society, 2002, 149, C201.	2.9	40
118	Electrodeposited Co-Ni alloys for MEMS. Journal of Micromechanics and Microengineering, 2002, 12, 400-405.	2.6	52
119	Characterisation of cobalt/copper multilayers obtained by electrodeposition. Surface and Coatings Technology, 2002, 153, 261-266.	4.8	27
120	Thick cobalt coatings obtained by electrodeposition. Journal of Applied Electrochemistry, 2002, 32, 693-700.	2.9	60
121	Characterisation of zinc+cobalt alloy phases obtained by electrodeposition. Journal of Electroanalytical Chemistry, 2001, 505, 54-61.	3.8	59
122	Electrodeposited cobalt+copper thin films on ITO substrata. Journal of Electroanalytical Chemistry, 2001, 517, 63-68.	3.8	32
123	Electrodeposited cobaltî—,molybdenum magnetic materials. Journal of Electroanalytical Chemistry, 2001, 517, 109-116.	3.8	73
124	Tin–cobalt electrodeposition from sulfate–gluconate baths. Journal of Applied Electrochemistry, 2001, 31, 349-354.	2.9	25
125	Obtention and characterisation of cobalt+copper electrodeposits from a citrate bath. Journal of Electroanalytical Chemistry, 2000, 495, 19-26.	3.8	26
126	Tin electrodeposition on carbon electrodes. From nuclei to microcrystallites. Journal of Electroanalytical Chemistry, 1999, 465, 63-71.	3.8	42

#	Article	IF	CITATIONS
127	Electrodeposition of zinc+iron alloys. Journal of Electroanalytical Chemistry, 1999, 469, 139-149.	3.8	34
128	Electrodeposition of zinc+iron alloys. Journal of Electroanalytical Chemistry, 1999, 475, 66-72.	3.8	24
129	Electrodeposition of Co + Ni alloys on modified silicon substrates. Journal of Applied Electrochemistry, 1999, 29, 803-810.	2.9	36
130	Simultaneous electrodeposition and detection of platinum on silicon surfaces. Journal of Electroanalytical Chemistry, 1998, 441, 147-151.	3.8	13
131	Electrodeposition of zinc + cobalt alloys: initiations and development of anomalous co-deposition. Journal of Electroanalytical Chemistry, 1997, 421, 157-163.	3.8	44
132	Nano- and micrometric approaches to cobalt electrodeposition on carbon substrates. Journal of Electroanalytical Chemistry, 1997, 422, 139-147.	3.8	55
133	Influence of pH on nickel electrodeposition at low nickel(II) concentrations. Journal of Applied Electrochemistry, 1995, 25, 770-775.	2.9	25
134	Nickel electrodeposition on different metallic substrates. Journal of Electroanalytical Chemistry, 1995, 386, 45-56.	3.8	66
135	Electrodeposition of zinc + cobalt alloys: inhibitory effect of zinc with convection and pH of solution. Journal of Electroanalytical Chemistry, 1995, 397, 177-184.	3.8	44
136	Morphology and structure of nickel nuclei as a function of the conditions of electrodeposition. Journal of Electroanalytical Chemistry, 1995, 397, 111-118.	3.8	36
137	Electrodeposition of Zinc obalt Alloys: Tapping Mode AFM Technique Applied to Study the Initial Stages of Deposition. Journal of the Electrochemical Society, 1995, 142, 4091-4096.	2.9	22
138	Electrodeposition of zinc + cobalt alloys Journal of Electroanalytical Chemistry, 1994, 370, 73-85.	3.8	30
139	Electrodeposition of nickel on vitreous carbon: Influence of potential on deposit morphology. Journal of Applied Electrochemistry, 1992, 22, 872-876.	2.9	38
140	Studies of electrodeposition of nickel: different nickel(II) and sulphonated additive concentrations. Journal of Electroanalytical Chemistry, 1992, 333, 47-64.	3.8	20
141	Electrochemical nucleation of nickel on vitreous carbon electrodes: the influence of organic additives. Journal of Applied Electrochemistry, 1991, 21, 709-715.	2.9	22
142	Zinc-nickel coatings: Relationship between additives and deposit properties. Journal of Applied Electrochemistry, 1991, 21, 44-49.	2.9	36
143	Electrodeposition of zinc-nickel alloy coatings: influence of a phenolic derivative. Journal of Applied Electrochemistry, 1990, 20, 635-639.	2.9	53
144	Two- and three-dimensional electrocrystallization of mercurous phthalate on a mercury electrode. Electrochimica Acta, 1989, 34, 781-787.	5.2	7

#	Article	IF	CITATIONS
145	Influence of the adsorption on the oxidation of oxalic acid on a gold electrode in acid media. Monatshefte Für Chemie, 1989, 120, 651-659.	1.8	4
146	Faradaic impedance methods as applied to the study of the potentiodynamic passivation of zinc in alkaline media. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1988, 247, 323-327.	0.1	3
147	Oxidation of pyruvate on gold electrode in basic media. Electrochimica Acta, 1987, 32, 677-681.	5.2	3
148	On the formation of two-dimensional condensed films at the interface mercury/ferron aqueous buffered solutions. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1987, 224, 237-251.	0.1	14
149	Phase transitions in mercury-quinoline derivative systems. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1986, 215, 345-355.	0.1	7
150	Oxidation of mesoxalate on gold in basic media. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1985, 190, 95-101.	0.1	13
151	The influence of some tetraalkylammonium cations on the rate of Eu3+ discharge at unity coverage of the dme. Electrochimica Acta, 1985, 30, 653-657.	5.2	Ο