
Tiago H Silva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10413849/publications.pdf Version: 2024-02-01

ΤΙΛΟΟΗ SULVA

#	Article	IF	CITATIONS
1	Sulfated Seaweed Polysaccharides. , 2022, , 307-340.		1
2	Mineralized collagen as a bioactive ink to support encapsulation of human adipose stem cells: A step towards the future of bone regeneration. Materials Science and Engineering C, 2022, 133, 112600.	3.8	5
3	Marine origin biomaterials using a compressive and absorption methodology as cell-laden hydrogel envisaging cartilage tissue engineering. , 2022, 137, 212843.		12
4	Fucoidan-based hydrogels particles as versatile carriers for diabetes treatment strategies. Journal of Biomaterials Science, Polymer Edition, 2022, 33, 1939-1954.	1.9	5
5	Prionace glauca skin collagen bioengineered constructs as a promising approach to trigger cartilage regeneration. Materials Science and Engineering C, 2021, 120, 111587.	3.8	23
6	Macro and Microstructural Characteristics of North Atlantic Deep-Sea Sponges as Bioinspired Models for Tissue Engineering Scaffolding. Frontiers in Marine Science, 2021, 7, .	1.2	11
7	Innovative methodology for marine collagen–chitosan–fucoidan hydrogels production, tailoring rheological properties towards biomedical application. Green Chemistry, 2021, 23, 7016-7029.	4.6	18
8	Diverse and Productive Source of Biopolymer Inspiration: Marine Collagens. Biomacromolecules, 2021, 22, 1815-1834.	2.6	22
9	Fucoidan Hydrogels Significantly Alleviate Oxidative Stress and Enhance the Endocrine Function of Encapsulated Beta Cells. Advanced Functional Materials, 2021, 31, 2011205.	7.8	8
10	Angiogenic potential of airbrushed fucoidan/polycaprolactone nanofibrous meshes. International Journal of Biological Macromolecules, 2021, 183, 695-706.	3.6	6
11	Marine-derived polymeric nanostructures for cancer treatment. Nanomedicine, 2021, 16, 1931-1935.	1.7	2
12	Impact of growth medium salinity on galactoxylan exopolysaccharides of Porphyridium purpureum. Algal Research, 2021, 59, 102439.	2.4	12
13	Marine origin materials on biomaterials and advanced therapies to cartilage tissue engineering and regenerative medicine. Biomaterials Science, 2021, 9, 6718-6736.	2.6	13
14	Acid and enzymatic extraction of collagen from Atlantic cod (<i>Gadus Morhua</i>) swim bladders envisaging health-related applications. Journal of Biomaterials Science, Polymer Edition, 2020, 31, 20-37.	1.9	54
15	Reserve, structural and extracellular polysaccharides of Chlorella vulgaris: A holistic approach. Algal Research, 2020, 45, 101757.	2.4	30
16	The Effect of Depth on the Morphology, Bacterial Clearance, and Respiration of the Mediterranean Sponge Chondrosia reniformis (Nardo, 1847). Marine Drugs, 2020, 18, 358.	2.2	24
17	Marine-derived biomaterials for cancer treatment. , 2020, , 551-576.		5
18	Extraction and Characterization of Collagen from Elasmobranch Byproducts for Potential Biomaterial Use. Marine Drugs, 2020, 18, 617.	2.2	33

TIAGO H SILVA

#	Article	IF	CITATIONS
19	Fucoidan Immobilized at the Surface of a Fibrous Mesh Presents Toxic Effects over Melanoma Cells, But Not over Noncancer Skin Cells. Biomacromolecules, 2020, 21, 2745-2754.	2.6	13
20	Marine collagen-chitosan-fucoidan cryogels as cell-laden biocomposites envisaging tissue engineering. Biomedical Materials (Bristol), 2020, 15, 055030.	1.7	31
21	Seaweed polysaccharides as sustainable building blocks for biomaterials in tissue engineering. , 2020, , 543-587.		6
22	A review on fucoidan antitumor strategies: From a biological active agent to a structural component of fucoidan-based systems. Carbohydrate Polymers, 2020, 239, 116131.	5.1	77
23	Collagen from Atlantic cod (Gadus morhua) skins extracted using CO2 acidified water with potential application in healthcare. Journal of Polymer Research, 2020, 27, 1.	1.2	44
24	Cell-Laden Biomimetically Mineralized Shark-Skin-Collagen-Based 3D Printed Hydrogels for the Engineering of Hard Tissues. ACS Biomaterials Science and Engineering, 2020, 6, 3664-3672.	2.6	35
25	Fucoidan from Fucus vesiculosus inhibits new blood vessel formation and breast tumor growth in vivo. Carbohydrate Polymers, 2019, 223, 115034.	5.1	51
26	Remarkable Body Architecture of Marine Sponges as Biomimetic Structure for Application in Tissue Engineering. Springer Series in Biomaterials Science and Engineering, 2019, , 27-50.	0.7	7
27	Evaluation of the Potential of Collagen from Codfish Skin as a Biomaterial for Biomedical Applications. Marine Drugs, 2018, 16, 495.	2.2	76
28	Gemcitabine delivered by fucoidan/chitosan nanoparticles presents increased toxicity over human breast cancer cells. Nanomedicine, 2018, 13, 2037-2050.	1.7	47
29	Marine Collagen/Apatite Composite Scaffolds Envisaging Hard Tissue Applications. Marine Drugs, 2018, 16, 269.	2.2	51
30	Extraction and characterization of collagen from Antarctic and Sub-Antarctic squid and its potential application in hybrid scaffolds for tissue engineering. Materials Science and Engineering C, 2017, 78, 787-795.	3.8	52
31	The Key Role of Sulfation and Branching on Fucoidan Antitumor Activity. Macromolecular Bioscience, 2017, 17, 1600340.	2.1	76
32	Bioinspiring Chondrosia reniformis (Nardo, 1847) Collagen-Based Hydrogel: A New Extraction Method to Obtain a Sticky and Self-Healing Collagenous Material. Marine Drugs, 2017, 15, 380.	2.2	22
33	Cosmetic Potential of Marine Fish Skin Collagen. Cosmetics, 2017, 4, 39.	1.5	130
34	Multifunctional biomaterials from the sea: Assessing the effects of chitosan incorporation into collagen scaffolds on mechanical and biological functionality. Acta Biomaterialia, 2016, 43, 160-169.	4.1	123
35	<i>In vitro</i> bioactivity studies of ceramic structures isolated from marine sponges. Biomedical Materials (Bristol), 2016, 11, 045004.	1.7	16
36	Extraction of Collagen/Gelatin from the Marine Demosponge <i>Chondrosia reniformis</i> (Nardo,) Tj ETQq0 0 0	rgBT /Ove 1.8	erlock 10 Tf 5 59

Chemistry Research, 2016, 55, 6922-6930.

TIAGO H SILVA

#	Article	IF	CITATIONS
37	Fucoidan Hydrogels Photo-Cross-Linked with Visible Radiation As Matrices for Cell Culture. ACS Biomaterials Science and Engineering, 2016, 2, 1151-1161.	2.6	41
38	Water and Carbon Dioxide: Green Solvents for the Extraction of Collagen/Gelatin from Marine Sponges. ACS Sustainable Chemistry and Engineering, 2015, 3, 254-260.	3.2	50
39	Marine Origin Collagens and Its Potential Applications. Marine Drugs, 2014, 12, 5881-5901.	2.2	300
40	Nanocoatings containing sulfated polysaccharides prepared by layer-by-layer assembly as models to study cell–material interactions. Journal of Materials Chemistry B, 2013, 1, 4406.	2.9	33
41	Porous Hydrogels From Shark Skin Collagen Crosslinked Under Dense Carbon Dioxide Atmosphere. Macromolecular Bioscience, 2013, 13, 1621-1631.	2.1	37
42	Hierarchical Fibrillar Scaffolds Obtained by Nonâ€conventional Layerâ€By‣ayer Electrostatic Selfâ€Assembly. Advanced Healthcare Materials, 2013, 2, 422-427.	3.9	27
43	Unleashing the potential of supercritical fluids for polymer processing in tissue engineering and regenerative medicine. Journal of Supercritical Fluids, 2013, 79, 177-185.	1.6	48
44	The use of ionic liquids in the processing of chitosan/silk hydrogels for biomedical applications. Green Chemistry, 2012, 14, 1463.	4.6	93
45	Marine algae sulfated polysaccharides for tissue engineering and drug delivery approaches. Biomatter, 2012, 2, 278-289.	2.6	151
46	Nanostructured Natural-Based Polyelectrolyte Multilayers to Agglomerate Chitosan Particles into Scaffolds for Tissue Engineering. Tissue Engineering - Part A, 2011, 17, 2663-2674.	1.6	36