Tahir Cagin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10413059/publications.pdf

Version: 2024-02-01

41344 36028 9,594 112 49 97 citations h-index g-index papers 114 114 114 10005 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Fluorescence Enhancement in the Solid State by Isolating Perylene Fluorophores in Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2020, 12, 26727-26732.	8.0	36
2	Acetonitrile confined in carbon nanotubes, part I: Structure, dynamic and transport properties. Journal of Molecular Liquids, 2020, 311, 113053.	4.9	1
3	Continuous Variation of Lattice Dimensions and Pore Sizes in Metal–Organic Frameworks. Journal of the American Chemical Society, 2020, 142, 4732-4738.	13.7	65
4	Retrosynthesis of multi-component metalâ^'organic frameworks. Nature Communications, 2018, 9, 808.	12.8	159
5	Metal–Organic–Inorganic Nanocomposite Thermal Interface Materials with Ultralow Thermal Resistances. ACS Applied Materials & Samp; Interfaces, 2017, 9, 10120-10127.	8.0	17
6	Construction of hierarchically porous metal–organic frameworks through linker labilization. Nature Communications, 2017, 8, 15356.	12.8	326
7	Thermal conductivity engineering of bulk and one-dimensional Si-Ge nanoarchitectures. Science and Technology of Advanced Materials, 2017, 18, 187-196.	6.1	18
8	Molecular-Level Modeling and Simulation in Process Safety. , 2016, , 111-210.		2
9	High-Pressure Methane, Carbon Dioxide, and Nitrogen Adsorption on Amine-Impregnated Porous Montmorillonite Nanoclays. Journal of Chemical & Engineering Data, 2016, 61, 2749-2760.	1.9	38
10	Electrophoretic Transport of Na ⁺ and K ⁺ Ions Within Cyclic Peptide Nanotubes. Journal of Physical Chemistry B, 2016, 120, 7872-7879.	2.6	12
11	Thermal transport properties of MoS ₂ and MoSe ₂ monolayers. Nanotechnology, 2016, 27, 055703.	2.6	108
12	Influence of Core-Shell Architecture Parameters on Thermal Conductivity of Si-Ge Nanowires. Materials Research Society Symposia Proceedings, 2015, 1735, 68.	0.1	O
13	Tailoring Thermal Conductivity of Ge/Si Core-Shell Nanowires. , 2015, , 433-440.		O
14	Equilibrium limit of thermal conduction and boundary scattering in nanostructures. Journal of Chemical Physics, 2014, 140, 244112.	3.0	11
15	A bottom-up route to enhance thermoelectric figures of merit in graphene nanoribbons. Scientific Reports, 2013, 3, 1228.	3.3	117
16	Cluster-ion bombardment studies to reveal the amorphization mode in strained Si0.8Ge0.2. Philosophical Magazine Letters, 2012, 92, 625-632.	1.2	0
17	Insights from theoretical calculations on structure, dynamics, phase behavior and hydrogen sorption in nanoporous metal organic frameworks. Computational and Theoretical Chemistry, 2012, 987, 42-56.	2.5	14
18	Thermal conductivity of BN-C nanostructures. Physical Review B, 2012, 86, .	3.2	429

#	Article	IF	Citations
19	Influence of disorder on thermal transport properties of boron nitride nanostructures. Physical Review B, 2012, 86, .	3.2	54
20	Phonon Engineering in Carbon Nanotubes by Controlling Defect Concentration. Nano Letters, 2011, 11, 4971-4977.	9.1	99
21	Control of Thermal and Electronic Transport in Defect-Engineered Graphene Nanoribbons. ACS Nano, 2011, 5, 3779-3787.	14.6	320
22	Finite-temperature elasticity of fcc Al: Atomistic simulations and ultrasonic measurements. Physical Review B, $2011, 84, \ldots$	3.2	37
23	Characterization of thermal transport in low-dimensional boron nitride nanostructures. Physical Review B, 2011, 84, .	3.2	264
24	Shock compression and spallation of palladium bicrystals with a $\hat{1}\pm5$ grain boundary. Journal of Applied Physics, 2011, 109, .	2.5	10
25	Viscous heating in nanoscale shear driven liquid flows. Microfluidics and Nanofluidics, 2010, 9, 31-40.	2.2	58
26	Coarse grain modeling of polyimide copolymers. Polymer, 2010, 51, 2786-2794.	3.8	25
27	Thermo-mechanical stability and strength of peptide nanostructures from molecular dynamics: self-assembled cyclic peptide nanotubes. Nanotechnology, 2010, 21, 115703.	2.6	10
28	Simulation Studies on Hydrogen Sorption and Its Thermodynamics in Covalently Linked Carbon Nanotube Scaffold. Journal of Physical Chemistry B, 2010, 114, 13752-13763.	2.6	18
29	Dynamic response of <a 1998="" display="inline" href="mml:math xmlns:mml=" http:="" math="" mathml"="" www.w3.org=""> <a href=" mml:mro<="" td=""><td>v>gmml:m</td><td>nn>46</td>	v>gmml:m	nn>46
30	Structure of polyamidoamide dendrimers up to limiting generations: A mesoscale description. Journal of Chemical Physics, 2009, 130, 144902.	3.0	46
31	Analysis of strain fields in silicon nanocrystals. Applied Physics Letters, 2009, 94, 191914.	3.3	21
32	Finite-temperature Anisotropic Elastic Properties of Ni-Mn-In Magnetic Shape Memory Alloy. Materials Research Society Symposia Proceedings, 2009, 1200, 63.	0.1	0
33	Thermal interactions in nanoscale fluid flow: molecular dynamics simulations with solid–liquid interfaces. Microfluidics and Nanofluidics, 2008, 5, 551-559.	2.2	92
34	Molecular dynamics simulations of thermal resistance at the liquid-solid interface. Journal of Chemical Physics, 2008, 129, 174701.	3.0	146
35	Report from the third workshop on future directions of solid-state chemistry: The status of solid-state chemistry and its impact in the physical sciences. Progress in Solid State Chemistry, 2008, 36, 1-133.	7.2	58
36	Origin of static friction and its relationship to adhesion at the atomic scale. Physical Review B, 2007, 75, .	3.2	30

#	Article	IF	Citations
37	Investigation of effective mass of carriers in Bi2Te3/Sb2Te3 superlattices via electronic structure studies on its component crystals. Applied Physics Letters, 2006, 89, 152101.	3.3	29
38	Strong configurational dependence of elastic properties for a binary model metallic glass. Applied Physics Letters, 2006, 89, 151901.	3.3	53
39	The ferroelectric and cubic phases in BaTiO3 ferroelectrics are also antiferroelectric. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 14695-14700.	7.1	119
40	Assessment of phenomenological models for viscosity of liquids based on nonequilibrium atomistic simulations of copper. Journal of Chemical Physics, 2005, 123, 104506.	3.0	26
41	Effect of Solvent and pH on the Structure of PAMAM Dendrimers. Macromolecules, 2005, 38, 979-991.	4.8	389
42	Nanophase Segregation and Water Dynamics in the Dendrion Diblock Copolymer Formed from the Fréchet Polyaryl Ethereal Dendrimer and Linear PTFE. Journal of Physical Chemistry B, 2005, 109, 10154-10167.	2.6	62
43	Molecular dynamics study of the binaryCu46Zr54metallic glass motivated by experiments: Glass formation and atomic-level structure. Physical Review B, 2005, 71, .	3.2	227
44	Atomic simulations of kinetic friction and its velocity dependence atAlâ^•Alandαâ^'Al2O3â^•αâ^'Al2O3interfaces. Physical Review B, 2005, 72, .	3.2	42
45	Adhesion and nonwetting-wetting transition in the Al/ \hat{l} ± \hat{a} °Al2O3interface. Physical Review B, 2004, 69, .	3.2	184
46	Structure of PAMAM Dendrimers:Â Generations 1 through 11. Macromolecules, 2004, 37, 6236-6254.	4.8	455
47	Nanophase-Segregation and Transport in Nafion 117 from Molecular Dynamics Simulations:Â Effect of Monomeric Sequence. Journal of Physical Chemistry B, 2004, 108, 3149-3157.	2.6	425
48	Thermodynamic Stability of Zimmerman Self-Assembled Dendritic Supramolecules from Atomistic Molecular Dynamics Simulations. Journal of Physical Chemistry B, 2004, 108, 10041-10052.	2.6	12
49	Mechanisms of Nonexponential Relaxation in Supercooled Glucose Solutions:  the Role of Water Facilitation. Journal of Physical Chemistry A, 2004, 108, 3699-3712.	2.5	30
50	Sugar, water and free volume networks in concentrated sucrose solutions. Chemical Physics Letters, 2003, 377, 469-474.	2.6	72
51	Maximum superheating and undercooling: Systematics, molecular dynamics simulations, and dynamic experiments. Physical Review B, 2003, 68, .	3.2	234
52	Criteria for formation of metallic glasses: The role of atomic size ratio. Journal of Chemical Physics, 2003, 119, 9858-9870.	3.0	81
53	Molecular Dynamics Simulations of Glass Formation and Crystallization in Binary Liquid Metals. Journal of Metastable and Nanocrystalline Materials, 2003, 15-16, 181-186.	0.1	5
54	Effect of cyclic chain architecture on properties of dilute solutions of polyethylene from molecular dynamics simulations. Journal of Chemical Physics, 2003, 119, 1843-1854.	3.0	44

#	Article	IF	CITATIONS
55	Atomistic simulations of kinks in $1/2$ a $\tilde{a} \in 111$ $\tilde{a} \in \infty$ screw dislocations in bcc tantalum. Physical Review B, 2003, 68, .	3.2	30
56	Friction anisotropy at Ni(100)/(100) interfaces:â€fMolecular dynamics studies. Physical Review B, 2002, 66,	3.2	55
57	The ReaxFF Polarizable Reactive Force Fields for Molecular Dynamics Simulation of Ferroelectrics. AIP Conference Proceedings, 2002, , .	0.4	16
58	Ab Initio Studies On Phase Behavior of Barium Titanate. Materials Research Society Symposia Proceedings, 2002, 718, 1.	0.1	14
59	Molecular dynamics modeling of stishovite. Earth and Planetary Science Letters, 2002, 202, 147-157.	4.4	21
60	Dynamic Charge Equilibration-Morse stretch force field: Application to energetics of pure silica zeolites. Journal of Computational Chemistry, 2002, 23, 1507-1514.	3.3	19
61	The MS-Q Force Field for Clay Minerals:Â Application to Oil Production. Journal of Physical Chemistry B, 2001, 105, 4122-4127.	2.6	23
62	Multiscale modeling and simulation methods with applications to dendritic polymers. Computational and Theoretical Polymer Science, 2001, 11, 345-356.	1,1	41
63	Structural and Dynamic Properties of Hexadecane Lubricants under Shear Flow in a Confined Geometry. ACS Symposium Series, 2001, , 158-177.	0.5	O
64	Atomistic Simulation of kinks for $1/2a<111>$ Screw Dislocation in Ta. Materials Research Society Symposia Proceedings, 2001, 677, 7301.	0.1	0
65	First principles multiscale modeling of physico-chemical aspects of tribology. Tribology Series, 2001, , 15-33.	0.1	1
66	Strategies for multiscale modeling and simulation of organic materials: polymers and biopolymers. Computational and Theoretical Polymer Science, 2001, 11, 329-343.	1.1	36
67	A multiscale approach for modeling crystalline solids. Journal of Computer-Aided Materials Design, 2001, 8, 127-149.	0.7	31
68	MPiSIM: Massively parallel simulation tool for metallic system. Journal of Computer-Aided Materials Design, 2001, 8, 185-192.	0.7	2
69	Kinks in the a/2ã€^111〉 screw dislocation in Ta. Journal of Computer-Aided Materials Design, 2001, 8, 117-125	5.0.7	7
70	Molecular dynamics simulations to compute the bulk response of amorphous PMMA. Journal of Computer-Aided Materials Design, 2001, 8, 87-106.	0.7	31
71	Crack propagation in a Tantalum nano-slab. Journal of Computer-Aided Materials Design, 2001, 8, 151-159.	0.7	6
72	Viscosities of liquid metal alloys from nonequilibrium molecular dynamics. Journal of Computer-Aided Materials Design, 2001, 8, 233-243.	0.7	79

#	Article	IF	Citations
73	Application of lightweight threading techniques to computational chemistry. Journal of Computer-Aided Materials Design, 2001, 8, 173-184.	0.7	О
74	Ab-initio studies of pressure induced phase transitions in BaO. Journal of Computer-Aided Materials Design, 2001, 8, 193-202.	0.7	19
75	Melting and crystallization in Ni nanoclusters: The mesoscale regime. Journal of Chemical Physics, 2001, 115, 385-394.	3.0	345
76	Critical behavior in spallation failure of metals. Physical Review B, 2001, 63, .	3.2	92
77	Molecular Dynamics Simulations of Supercooled Liquid Metals and Glasses. Materials Research Society Symposia Proceedings, 2000, 644, 231.	0.1	2
78	Molecular modelling of dendrimers for nanoscale applications. Nanotechnology, 2000, 11, 77-84.	2.6	57
79	Thermal conductivity of carbon nanotubes. Nanotechnology, 2000, 11, 65-69.	2.6	988
80	Thermal conductivity of diamond and related materials from molecular dynamics simulations. Journal of Chemical Physics, 2000, 113, 6888-6900.	3.0	307
81	Application of the Self-Assembled Monolayer (SAM) Model to Dithiophosphate and Dithiocarbamate Engine Wear Inhibitors. Journal of Physical Chemistry A, 2000, 104, 2508-2524.	2.5	25
82	Morse Stretch Potential Charge Equilibrium Force Field for Ceramics: Application to the Quartz-Stishovite Phase Transition and to Silica Glass. Physical Review Letters, 1999, 82, 1708-1711.	7.8	173
83	Molecular-dynamics simulations of glass formation and crystallization in binary liquid metals: Cu-Ag and Cu-Ni. Physical Review B, 1999, 59, 3527-3533.	3.2	252
84	Computational Materials Chemistry at the Nanoscale. Journal of Nanoparticle Research, 1999, 1, 51-69.	1.9	23
85	Generalized extended empirical bond-order dependent force fields including nonbond interactions. Theoretical Chemistry Accounts, 1999, 102, 346-354.	1.4	53
86	Simulation and experiments on friction and wear of diamond: a material for MEMS and NEMS application. Nanotechnology, 1999, 10, 278-284.	2.6	58
87	Studies of fullerenes and carbon nanotubes by an extended bond order potential. Nanotechnology, 1999, 10, 263-268.	2.6	35
88	Theoretical studies on VPI-5. 3 Computational Materials Science, 1999, 14, 135-137.	3.0	11
89	Factors affecting molecular dynamics simulated vitreous silica structures. Journal of Non-Crystalline Solids, 1999, 253, 133-142.	3.1	121
90	Strain Rate Induced Amorphization in Metallic Nanowires. Physical Review Letters, 1999, 82, 2900-2903.	7.8	268

#	Article	IF	Citations
91	Phase diagram of MgO from density-functional theory and molecular-dynamics simulations. Physical Review B, 1999, 60, 15084-15093.	3.2	77
92	Novel algorithms for massively parallel, long-term, simulation of molecular dynamics systems. Advances in Engineering Software, 1998, 29, 441-450.	3.8	10
93	Calculation of Mechanical, Thermodynamic and Transport Properties of Metallic Glass Formers. Materials Research Society Symposia Proceedings, 1998, 554, 43.	0.1	117
94	Position of K Atoms in Doped Single-Walled Carbon Nanotube Crystals. Physical Review Letters, 1998, 80, 5556-5559.	7.8	117
95	Recent Advances in Simulation of Dendritic Polymers. Materials Research Society Symposia Proceedings, 1998, 543, 299.	0.1	2
96	Diamond and Polycrystalline Diamond for MEMS Applications: Simulations and Experiments. Materials Research Society Symposia Proceedings, 1998, 546, 109.	0.1	0
97	Deformation Behavior of FCC Crystalline Metallic Nanowires Under High Strain Rates. Materials Research Society Symposia Proceedings, 1998, 554, 367.	0.1	1
98	Pressure Induced Phase Transformations in Silica. Materials Research Society Symposia Proceedings, 1997, 492, 287.	0.1	4
99	The SAM Model for Wear Inhibitor Performance of Dithiophosphates on Iron Oxide. Journal of Physical Chemistry B, 1997, 101, 7702-7709.	2.6	44
100	Dynamics of Bengal Rose Encapsulated in the Meijer Dendrimer Box. Journal of the American Chemical Society, 1997, 119, 7458-7462.	13.7	93
101	Local chain dynamics of a model polycarbonate near glass transition temperature: A molecular dynamics simulation. Macromolecular Theory and Simulations, 1997, 6, 83-102.	1.4	54
102	Fast Ewald sums for general van der Waals potentials. Journal of Computational Chemistry, 1997, 18, 1365-1370.	3.3	26
103	Wetting of crystalline polymer surfaces: A molecular dynamics simulation. Journal of Chemical Physics, 1995, 103, 9053-9061.	3.0	109
104	Molecular Modeling of Polycarbonate. 1. Force Field, Static Structure, and Mechanical Properties. Macromolecules, 1994, 27, 2383-2391.	4.8	111
105	Dynamic simulations of water at constant chemical potential. Journal of Chemical Physics, 1992, 96, 1333-1342.	3.0	65
106	Thermodynamic and Elastic Properties of Polyethylene at Elevated Temperatures. Materials Research Society Symposia Proceedings, 1992, 278, 61.	0.1	11
107	Molecular dynamics with a variable number of molecules. Molecular Physics, 1991, 72, 169-175.	1.7	100
108	Grand Molecular Dynamics: A Method for Open Systems. Molecular Simulation, 1991, 6, 5-26.	2.0	86

TAHIR CAGIN

#	Article	IF	CITATION
109	A method for modeling icosahedral virions: Rotational symmetry boundary conditions. Journal of Computational Chemistry, 1991, 12, 627-634.	3.3	29
110	Fundamental treatment of molecular-dynamics ensembles. Physical Review A, 1988, 37, 247-251.	2.5	58
111	Isothermal molecular-dynamics ensembles. Physical Review A, 1988, 37, 4510-4513.	2.5	23
112	Molecular Dynamics Simulations of Piezoelectric Materials for Energy Harvesting Applications. Materials Science Forum, 0, 792, 54-64.	0.3	1